Share This Article:

Recent Advances in X-Ray Structures of Metal-Phenoxyl Radical Complexes

Abstract Full-Text HTML XML Download Download as PDF (Size:827KB) PP. 60-71
DOI: 10.4236/ampc.2013.31A009    3,478 Downloads   5,579 Views   Citations

ABSTRACT

An “experimental” valence state of metal complexes is sometime different from the “formal” oxidation state, especially in the species having redox active ligands. This difference can be seen in biological system, such as iron(IV)-porphyrin π-cation radical in some heme proteins and copper(II)-phenoxyl radical in galactose oxidase (GO). Although structural characterizations of these species by X-ray diffraction methods have been rare due to their stability, some artificial metal-phenoxyl radical complexes have been synthesized and successfully characterized by X-ray crystal structure. In this review, syntheses and X-ray crystal structures of the one-electron oxidized metal-phenolate complexes, metal- phenoxyl radical, and high-valent metal phenolate species are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Shimazaki, "Recent Advances in X-Ray Structures of Metal-Phenoxyl Radical Complexes," Advances in Materials Physics and Chemistry, Vol. 3 No. 1A, 2013, pp. 60-71. doi: 10.4236/ampc.2013.31A009.

References

[1] R. H. Holm, P. Kennepohl and E. I. Solomon, “Structural and Functional Aspects of Metal Site in Biology,” Chemical Reviews, Vol. 96, No. 7, 1996, pp. 2239-2314. doi:10.1021/cr9500390
[2] H. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, “Structure and Reaction Mechanism in the Heme Dioxygenases,” Chemical Reviews, Vol. 96, No. 7, 1996, pp. 2841-2887. doi:10.1021/cr9500500
[3] B. Meunier, S. P. de Visser and S. Shaik, “Theoretical Perspective on Structure and Mechanisms of Cytochrome P450 Enzymes,” Chemical Reviews, Vol. 104, No. 9, 2004, pp. 3947-3980. doi:10.1021/cr020443g
[4] M. Baik, M. Newcomb, R. A. Friesner and S. J. Lippard, “Insights into the P-to-Q Conversion in the Catalytic Cycle of Methane Monooxygenase from a Synthetic Model System,” Chemical Reviews, Vol. 103, No. 6, 2003, pp. 2385-2420. doi:10.1021/cr950244f
[5] E. Y. Tshuva and S. J. Lippard, “Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics,” Chemical Reviews, Vol. 104, No. 2, 2004, pp. 987-1012. doi:10.1021/cr020622y
[6] M. Costas, M. P. Mehn, M. P. Jensen and L. Que Jr., “Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates,” Chemical Reviews, Vol. 104, No. 2, 2004, pp. 939-986. doi:10.1021/cr020628n
[7] E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang and J. Zhou, “Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes,” Chemical Reviews, Vol. 100, No. 1, 2000, pp. 235-350. doi:10.1021/cr9900275
[8] W. Nam, “Special Issue on Dioxygen Activation by Metalloenzymes and Models,” Accounts of Chemical Research, Vol. 40, No. 7, 2007, pp. 465-635. doi:10.1021/ar700131d
[9] A. Gunay and K. H. Theopold, “C-H Bond Activations by Metal Oxo Compounds,” Chemical Reviews, Vol. 110, No. 2, 2010, pp. 1060-1081. doi:10.1021/cr900269x
[10] L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, “Structure and Spectroscopy of Copper-Dioxygen Complexes,” Chemical Reviews, Vol. 104, No. 2, 2004, pp. 1013-1046. doi:10.1021/cr020632z
[11] E. A. Lewis and W. B. Tolman, “Reactivity of Dioxygen- Copper Systems,” Chemical Reviews, Vol. 104, No. 2, 2004, pp. 1047-1076. doi:10.1021/cr020633r
[12] J.-U. Rohde, J. H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam and L. Que Jr., “Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)=O Complex,” Science, Vol. 299, No. 5609, 2003, pp. 1037-1039. doi:10.1126/science.299.5609.1037
[13] C. K. Jörgensen, “Oxidation Numbers and Oxidation States,” Springer, Heidelberg, 1969. doi:10.1007/978-3-642-87758-2
[14] P. J. Chirik and K. Wieghardt, “Radical Ligands Confer Nobility on Base-Metal Catalysts,” Science, Vol. 327, No. 5967, 2010, pp. 794-795. doi:10.1126/science.1183281
[15] W. Kaim, “Manifestations of Noninnocent Ligand Behavior,” Inorganic Chemistry, Vol. 50, No. 20, 2011, pp. 9752-9765. doi:10.1021/ic2003832
[16] J. Stubbe and W. A. van der Donk, “Protein Radicals in Enzyme Catalysis,” Chemical Reviews, Vol. 98, No. 2, 1998, pp. 705-762. doi:10.1021/cr9400875
[17] J. W. Whittaker, “Radical Copper Oxidases,” Metal Ions in Biological Systems, Vol. 30, 1994, pp. 315-360.
[18] J. W. Whittaker, “Free Radical Catalysis by Galactose Oxidase,” Chemical Reviews, Vol. 103, No. 6, 2003, pp. 2347-2363. doi:10.1021/cr020425z
[19] N. Ito, S. E. V. Phillips, K. D. S. Yadav and P. F. Knowles, “Crystal Structure of a Free Radical Enzyme, Galactose Oxidase,” Journal of Molecular Biology, Vol. 238, No. 5, 1994, pp. 794-814.
[20] G. R. Dyrkacz, R. D. Libby and G. A. Hamilton, “Trivalent Copper as a Probable Intermediate in the Reaction Catalyzed by Galactose Oxidase,” Journal of the American Chemical Society, Vol. 98, No. 2, 1976, pp. 626-628. doi:10.1021/ja00418a060
[21] G. A. Hamilton, P. K. Adolf, J. de Jersey, G. C. DuBois, G. R. Dyrkacz and R. D. Libby, “Trivalent Copper, Superoxide, and Galactose Oxidase,” Journal of the American Chemical Society, Vol. 100, No. 6, 1978, pp. 1899- 1912. doi:10.1021/ja00474a042
[22] K. Clark, J. E. Penner-Hahn, M. M. Whittaker and J. W. Whittaker, “Oxidation-State Assignments for Galactose Oxidase Complexes from X-Ray Absorption Spectroscopy. Evidence for Copper(II) in the Active Enzyme,” Journal of the American Chemical Society, Vol. 112, No. 17, 1990, pp. 6433-6435. doi:10.1021/ja00173a061
[23] M. L. McGlashen, D. D. Eads, T. G. Spiro and J. W. Whittaker, “Resonance Raman Spectroscopy of Galactose Oxidase: A New Interpretation Based on Model Compound Free Radical Spectra,” Journal of Physical Chemistry, Vol. 99, No. 14, 1995, pp. 4918-4922. doi:10.1021/j100014a008
[24] P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller and K. Wieghardt, “Electronic Structure of Bis(oiminobenzosemiquinonato)metal Complexes (Cu, Ni, Pd). The Art of Establishing Physical Oxidation States in Transition-Metal Complexes Containing Radical Ligands,” Journal of the American Chemical Society, Vol. 123, No. 10, 2001, pp. 2213-2223. doi:10.1021/ja003831d
[25] D. Herebian, E. Bothe, E. Bill, T. Weyhermüller and K. Wieghardt, “Experimental Evidence for the Noninnocence of o-Aminothiophenolates: Coordination Chemistry of o-Iminothionebenzosemiquinonate(1-) π-Radicals with Ni(II), Pd(II), Pt(II),” Journal of the American Chemical Society, Vol. 123, No. 41, 2001, pp. 10012-10023. doi:10.1021/ja011155p
[26] J. Hockertz, S. Steenken, K. Wieghardt and P. Hildebrandt, “(Photo)ionization of tris(phenolato)iron(III) Complexes: Generation of Phenoxyl Radical as Ligand,” Journal of the American Chemical Society, Vol. 115, No. 24, 1993, pp. 11222-11230. doi:10.1021/ja00077a022
[27] M. R. DeFilippis, C. P. Murthy, M. Faraggi and M. H. Klapper, “Pulse Radiolytic Measurement of Redox Potentials: The Tyrosine and Tryptophan Radicals,” Biochemistry, Vol. 28, No. 11, 1989, pp. 4847-4853. doi:10.1021/bi00437a049
[28] J. Emsley, “The Elements,” 3rd Edition, Oxford University Press, Oxford, 1998.
[29] J. A. Halfen, B. A. Jazdzewski, S. Mahapatra, L. M. Berreau, E. C. Wilkinson, L. Que Jr. and W. B. Tolman, “Synthetic Models of the Inactive Copper(II)-Tyrosinate and Active Copper(II)-Tyrosyl Radical Forms of Galactose and Glyoxal Oxidases,” Journal of the American Chemical Society, Vol. 119, No. 35, 1997, pp. 8217-8227. doi:10.1021/ja9700663
[30] R. C. Pratt and T. D. P. Stack, “Intramolecular Charge Transfer and Biomimetic Reaction Kinetics in Galactose Oxidase Model Complexes,” Journal of the American Chemical Society, Vol. 125, No. 29, 2003, pp. 8716-8717. doi:10.1021/ja035837j
[31] N. G. Connelly and W. E. Geiger, “Chemical Redox Agents for Organometallic Chemistry,” Chemical Reviews, Vol. 96, No. 2, 1996, pp. 877-910. doi:10.1021/cr940053x
[32] E. Vinck, D. M. Murphy, I. A. Fallis, R. R. Strevens and S. Van Doorslaer, “Formation of a Cobalt(III)-Phenoxyl Radical Complex by Acetic Acid Promoted Aerobic Oxidation of a Co(II)salen Complex,” Inorganic Chemistry, Vol. 49, No. 5, 2010, pp. 2083-2092. doi:10.1021/ic901849e
[33] Y. Shimazaki, S. Huth, A. Odani and O. Yamauchi, “A Structural Model for the Galactose Oxidase Active Site which Shows Counteranion-Dependent Phenoxyl Radical Formation by Disproportionation,” Angewandte Chemie International Edition, Vol. 39, No. 9, 2000, pp. 1666- 1669. doi:10.1002/(SICI)1521-3773(20000502)39:9<1666::AID-ANIE1666>3.0.CO;2-O
[34] Y. Shimazaki, S. Huth, S. Hirota and O. Yamauchi, “Studies on Galactose Oxidase Active Site Model Complexes: Effects of Ring Substituents on Cu(II)-Phenoxyl Radical Formation,” Inorganica Chimica Acta, Vol. 331, No. 1, 2002, pp. 168-177. org/10.1016/S0020-1693(01)00781-2
[35] E. R. Altwicker, “The Chemistry of Stable Phenoxy Radicals” Chemistry Review, Vol. 67, No. 5, 1967, pp. 475- 531. doi:10.1021/cr60249a001
[36] G. N. R. Tripathi and R. H. Schuler, “Resonance Raman Studies of Substituent Effects on the Electronic Structure of Phenoxyl Radicals,” The Journal of Physical Chemistry, Vol. 92, No. 18, 1988, pp. 5129-5133. doi:10.1021/j100329a015
[37] Y. Shimazaki and O. Yamauchi, “Recent Advantage in Metal-Phenoxyl Radical Chemistry,” Indian Journal Chemistry Section A, Vol. 50A, No. 3-4, 2011, pp. 383-394.
[38] A. Sokolowski, E. Bothe, E. Bill, T. Weyhermüller and K. Wieghardt, “Phenoxyl Radical Complexes of Chromium (III),” Chemical Communications, No. 14, 1996, pp. 1671- 1672. doi:10.1039/cc9960001671
[39] L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C. D. Garner, E. J. L. McInnes, J. McMaster, G. Whittaker and C. Wilson, “A Phenoxyl Radical Complex of Copper(II),” Chemical Communications, No. 18, 2001, pp. 1824-1825. doi:10.1039/b105186p
[40] L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C. D. Garner, E. J. L. McInnes, J. McMaster, G. Whittaker and C. Wilson, “A Phenol-Imidazole Pro-Ligand That Can Exist as a Phenoxyl Radical, Alone and When Complexed To copper(II) and Zinc(II),” Dalton Transactions, No. 10, 2003, pp. 1975-1985. doi:10.1039/b212209j
[41] L. Benisvy, E. Bill, A. J. Brlake, D. Collison, E. S. Davies, C. D. Garner, C. I. Guindy, E. J. L. McInnes, G. Mc- Ardle, J. McMaster, C. Wilson and J. Wolowsks, “Phenolate and Phenoxyl Radical Complexes of Co(II) and Co(III),” Dalton Transactions, No. 21, 2004, pp. 3647- 3653. doi:10.1039/b410934a
[42] T. Storr, E. C. Wasinger, R. C. Pratt and T. D. P. Stack, “The Geometric and Electronic Structure of a One-Electron-Oxidized Nickel(II) Bis(Salicylidene)diamine Complex,” Angewandte Chemie International Edition, Vol. 46, No. 27, 2007, pp. 5198-5201. doi:10.1002/anie.200701194
[43] Y. Shimazaki, T. D. P. Stack and T. Storr, “Detailed Evaluation of the Geometric and Electronic Structures of One-Electron Oxidized Group 10 (Ni, Pd, and Pt) Metal (II)-(Disalicylidene)diamine Complexes,” Inorganic Chemistry, Vol. 48, No. 17, 2009, pp. 8383-8392. doi:10.1021/ic901003q
[44] Y. Shimazaki, N. Arai, T. J. Dunn, T. Yajima, F. Tani, C. F. Ramogida and T. Storr, “Influence of the Chelate Effect on the Electronic Structure of One-Electron Oxidized Group 10 Metal(II)-(Disalicylidene)diamine,” Dalton Transactions, Vol. 40, No. 11, 2011, pp. 2469-2479. doi:10.1039/c0dt01574a
[45] Y. Shimazaki, T. Yajima, F. Tani, S. Karasawa, K. Fukui, Y. Naruta and O. Yamauchi, “Syntheses and Electronic Structures of One-Electron-Oxidized Group 10 Metal(II)- (Disalicylidene)diamine Complexes (Metal = Ni, Pd, Pt),” Journal of the American Chemistry Society, Vol. 129, No. 9, 2007, pp. 2559-2568. doi:10.1021/ja067022r
[46] B. Bag, N. Mondal, G. Rosair and S. Mitra, “The First Thermally-Stable Singly Oxo-Bridged Dinuclear Ni(III) Complex,” Chemical Communications, No. 18, 2000, pp. 1729-1730. doi:10.1039/b004165n
[47] Y. Shimazaki, O. Yamauchi, “Group-10 Metal Complexes of Biological Molecules and Related Ligands: Structural and Functional Properties,” Chemistry and Biodiversity, Vol. 9, No. 9, 2012, pp. 1635-1658. doi:10.1002/cbdv.201100446
[48] T. Storr, P. Verma, R. C. Pratt, E. C. Wasinger, Y. Shimazaki and T. D. P. Stack, “Defining the Electronic and Geometric Structure of One-Electron Oxidized Copper- Bis-phenoxide Complexes,” Journal of the American Chemistry Society, Vol. 130, No. 46, 2008, pp. 15448- 15459. doi:10.1021/ja804339m
[49] K. Asami, K. Tsukidate, S. Iwatsuki, F. Tani, S. Karasawa, L. Chiang, T. Storr, F. Thomas and Y. Shimazaki, “New Insights into the Electronic Structure and Reactivity of One-Electron Oxidized Copper(II)-(Disalicylidene) diamine Complexes,” Inorganic Chemistry, Vol. 51, No. 22, 2012, pp. 12450-12461. doi:10.1021/ic3018503
[50] M. Orio, O. Jarjayes, H. Kanso, C. Philouze, F. Neese and F. Thomas, “X-Ray Structures of Copper(II) and Nickel (II) Radical Salen Complexes: The Preference of Galactose Oxidase for Copper(II),” Angewandte Chemie International Edition, Vol. 49, No. 29, 2010, pp. 4989- 4992. doi:10.1002/anie.201001040
[51] A. Kochem, O. Jarjayes, B. Baptiste, C. Philouze, H. Vezin, K. Tsukidate, F. Tani, M. Orio, Y. Shimazaki and F. Thomas “One-Electron Oxidized Copper(II) Salophen Complexes: Phenoxyl versus Diiminobenzene Radical Species.” Chemistry—A European Journal, Vol. 18, No. 4, 2012, pp. 1068-1072. doi:10.1002/chem.201102882
[52] F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint- Aman and J.-L. Pierre, “Intramolecularly Hydrogen- Bonded versus Copper(II) Coordinated Mono- and Bis- Phenoxyl Radicals” Dalton Transactions, No. 17, 2004, pp. 2662-2669. doi:10.1039/b406009a

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.