Share This Article:

Body temperature control in fever modeling after preliminary injection of glutamate receptors ligands into the solitary tract nucleus

Full-Text HTML XML Download Download as PDF (Size:355KB) PP. 557-562
DOI: 10.4236/abb.2013.44073    2,818 Downloads   4,405 Views  

ABSTRACT

Deep body temperature of 57 male Wistar rats was measured in response to systemic (i.v. or i.p.) injection of Escherichia coli lipopolysaccharide (LPS). Animals were preliminarily (4 weeks before the experiment) treated with microinjections of the toxic dose of glutamate receptors agonists or vehicle into solitary tract nucleus or caudal part of ventrolateral medulla. Microinjections of the glutamate receptors agonists provoked a local destruction of brain tissue, which was accompanied by the significant transformation (amplification or attenuation) of temperature response to the systemic injection of 3 μg/kg E. coli LPS. Animals treated with vehicle did not demonstrate significant changes in their response to LPS. Obtained data testify that impairment of central nervous structure involved in the regulation and maintenance of deep body temperature is accompanied by atypical development of E. coli LPS-induced fever.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Koulchitsky, S. , Pashkevich, S. , Navasiolava, N. , Custaud, M. and Kulchitsky, V. (2013) Body temperature control in fever modeling after preliminary injection of glutamate receptors ligands into the solitary tract nucleus. Advances in Bioscience and Biotechnology, 4, 557-562. doi: 10.4236/abb.2013.44073.

References

[1] Lam, D.K., Sessle, B.J. and Hu, J.W. (2009) Glutamate and capsaicin effects on trigeminal nociception II: Activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Research, 1253, 48-59. doi:10.1016/j.brainres.2008.11.056
[2] Maione, S., Starowicz, K., Cristino, L., Guida, F., Palazzo, E., Luongo, L., Rossi, F., Marabese, I., de Novellis, V. and Di Marzo, V. (2009) Functional interaction between TRPV1 and muopioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia. Journal of Neurophysiology, 101, 24112422. doi:10.1152/jn.91225.2008
[3] Mandadi, S. and Roufogalis, B.D. (2008) ThermoTRP channels in nociceptors: Taking a lead from capsaicin receptor TRPV1. Current Neuropharmacology, 6, 21-38. doi:10.2174/157015908783769680
[4] Meldrum, B.S. (2000) Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. Journal of Nutrition, 130, 1007S-1015S.
[5] Ootsuka, Y., Blessing, W.W., Steiner, A.A. and Romanovsky, A.A. (2008) Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R1294-R1303. doi:10.1152/ajpregu.00709.2007
[6] Palazzo, E., Luongo, L., de Novellis, V., Rossi, F., Marabese, I. and Maione, S. (2012) Transient receptor potential vanilloid type 1 and pain development. Current Opinion in Pharmacology, 12, 9-17. doi:10.1016/j.coph.2011.10.022
[7] Bluthe, R.-M., Walter, V., Parnet, P., Laye, S., Lestage, J., Verrier, D., Poole, S., Stenning, B.E., Kelley, K.W. and Dantzer, R. (1994) Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. Comptes Rendus de l’Académie des Sciences, 317, 499-503.
[8] Watkins, L.R., Wiertelak, E.P., Goehler, L.E., MooneyHeiberger, K., Martinez, J., Furness, L., Smith, K.P. and Maier, S.F. (1994) Neurocircuitry of illness-induced hyperalgesia. Brain Research, 639, 283-299. doi:10.1016/0006-8993(94)91742-6
[9] Watkins, L.R., Maier, S.F. and Goehler, L.E. (1995) Cytokine-to-brain communication: A review and analysis of alternative mechanisms. Life Sciences, 57, 1011-1026. doi:10.1016/0024-3205(95)02047-M
[10] Gaykema, R.P.A., Dijkstra, I. and Tilders, F.J.H. (1995) Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology, 136, 4717-4720. doi:10.1210/en.136.10.4717
[11] Blatteis, C.M. and Sehic, E. (1997) Fever: How may circulating pyrogens signal the brain? News in Physiological Science, 12, 1-9.
[12] Goldbach, J.-M., Roth, J. and Zeisberger, E. (1997) Fever suppression by subdiaphragmatic vagotomy in guinea pigs depends on the route of pyrogen administration. American Journal of Physiology, 272, R675-R681.
[13] Sehic, E. and Blatteis, C.M. (1996) Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Research, 726, 160-166. doi:10.1016/0006-8993(96)00326-5
[14] Simons, C.T., Kulchitsky, V.A., Sugimoto, N., Homer, L.D., SzeÂkely, M. and Romanovsky, A.A. (1998) Signaling the brain in systemic inammation: Which vagal branch is involved in fever genesis? American Journal of Physiology, 275, R63-R68.
[15] Bishnoi, M. and Premkumar, L.S. (2011) Possible consequences of blocking transient receptor potential vanilloid. Current Pharmaceutical Biotechnology, 12, 102-114. doi:10.2174/138920111793937907
[16] Forsythe, P., Kunze, W.A. and Bienenstock, J. (2012) On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 28, 557-562. doi:10.1097/MOG.0b013e3283572ffa
[17] Rahimi-Movaghar, V., Yazdi, A. and Mohammadi, M. (2008) Usefulness of the tail-flick reflex in the prognosis of functional recovery in paraplegic rats. Surgical Neurology, 70, 323-325. doi:10.1016/j.surneu.2007.05.056
[18] Koulchitsky, S.V. (1998) Are the capsaicin-sensitive structures of ventral medulla involved in the temperature response to endotoxin in rats? Neuroscience Letters, 244, 112-114. doi:10.1016/S0304-3940(98)00128-1
[19] Koulchitsky, S.V., Levkovets, V.S., Tchitchkan, D.N., Soltanov, V.V. and Kulchitsky, V.A. (1999) Role of the solitary tract nucleus and caudal ventrolateral medulla in temperature responses in endotoxemic rats. Life Sciences, 64, 37-43. doi:10.1016/S0024-3205(98)00531-1
[20] Koulchitsky, S.V. and Kulchitsky, V.A. (2001) Central and peripheral mechanisms of nociceptive reflexes in conditions of acute phase reaction. Proceedings of the National Science Council, Republic of China, 25, 197-213.
[21] Bohus, B. and de Wied, D. (1998) The vasopressin deficient Brattleboro rats: A natural knockout model used in the search for CNS effects of vasopressin. Progress in Brain Research, 119, 555-573. doi:10.1016/S0079-6123(08)61593-9
[22] Lipski, J., Lin, J., Teo, M.Y. and van Wyk, M. (2002) The network vs. pacemaker theory of the activity of RVL presympathetic neurons—A comparison with another putative pacemaker system. Autonomic Neuroscience: Basic and Clinical, 98, 85-89. doi:10.1016/S1566-0702(02)00038-3
[23] Moult, P.R. and Harvey, J. (2009) Regulation of glutamate receptor trafficking by leptin. Biochemical Society Transactions, 37, 1364-1368. doi:10.1042/BST0371364
[24] Herman, M.A., Alayan, A., Sahibzada, N., Bayer, B., Verbalis, J., Dretchen, K.L. and Gillis, R.A. (2010) micro-Opioid receptor stimulation in the medial subnucleus of the tractus solitarius inhibits gastric tone and motility by reducing local GABA activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299, G494-G506. doi:10.1152/ajpgi.00038.2010
[25] Holden, J.E. and Pizzi, J.A. (2008) Lateral hypothalamic-induced antinociception may be mediated by a substance P connection with the rostral ventromedial medulla. Brain Research, 1214, 40-49. doi:10.1016/j.brainres.2008.03.051
[26] Koulchitsky, S.V., Azev, O.A., Gourine, A.V. and Kulchitsky, V.A. (1994) Capsaicin-sensitive area in the ventral surface of the rat medulla. Neuroscience Letters, 182, 129-132. doi:10.1016/0304-3940(94)90780-3
[27] Paxinos, Y. and Watson, C. (1986) The Rat Brain in stereotaxic coordinates. Academic Press, Orlando.
[28] Goncharuk, V.D., Buijs, R.M., Jhamandas, J.H. and Swaab, D.F. (2011) Vasopressin (VP) and neuropeptide FF (NPFF) systems in the normal and hypertensive human brainstem. Journal of Comparative Neurology, 519, 93124. doi:10.1002/cne.22507
[29] Kozak, W., Kluger, M.J., Tesfaigzi, J., Kozak, A., Mayfield, K.P., Wachulec, M. and Dokladny, K. (2000) Molecular mechanisms of fever and endogenous antipyresis. Annals of New York Academy of Sciences, 917, 121-134. doi:10.1111/j.1749-6632.2000.tb05376.x
[30] Yue, C., Ma, B., Zhao, Y., Li, Q. and Li, J. (2012) Lipopolysaccharide-induced bacterial translocation is intestine site-specific and associates with intestinal mucosal inflammation. Inflammation, 35, 1880-1888. doi:10.1007/s10753-012-9510-1
[31] Yagi, S., Takaki, A., Hori, T. and Sugimachi, K. (2002) Enteric lipopolysaccharide raises plasma IL-6 levels in the hepatoportal vein during non-inflammatory stress in the rat. Fukuoka Igaku Zasshi, 93, 38-51.
[32] Wan, S., Browning, K.N., Coleman, F.H., Sutton, G., Zheng, H., Butler, A., Berthoud, H.R. and Travagli R.A. (2008) Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. Journal of Neuroscience, 28, 49574966. doi:10.1523/JNEUROSCI.5398-07.2008

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.