Assessment of a short phylogenetic marker based on comparisons of 3’ end 16S rDNA and 5’ end 16S-23S ITS nucleotide sequences of the Bacillus cereus group
Sabarimatou Yakoubou, Jean-Charles Côté
DOI: 10.4236/ns.2010.210138   PDF    HTML     6,203 Downloads   11,102 Views   Citations


A short phylogenetic marker previously used in the reconstruction of the Order Bacillales and the genus Bacillus was assessed here at a lower taxa level: species in the Bacillus cereus group: B. anthracis, B. cereus, B. thuringiensis and B. weihenstephanensis. This maker is 220 bp in length. It is a combination of 150 bp at the 3’ end of the 16S rDNA and 70 bp at the 5’ end of the 16S-23S ITS sequence. Three additional Bacillus species, B. halodurans, B. licheniformis and B. subtilis, and Clostridium tetani were included for comparison purposes. A total of eight bacterial species and 12 strains were analyzed. A boot- strapped neighbor-joining tree was inferred from comparative analyses of all allelic sequences of the bacterial species and strains under study. Based on its topology, four major Groups were revealed at the 90% nucleotide sequence identities, Group I to IV. Group I contains all al-leles of the Bacillus cereus group. Group II con-tains all alleles of B. halodurans. Group III con-tains all alleles of B. licheniformis and B. subtilis. Group IV contains all alleles of Clostridium tetani. The 220 bp phylogenetic marker used here could resolve different species from different genera. At the genus level, distant species could be dis-tinguished. Very closely-related species, however, were undistinguishable. Species in the B. cereus group, most notably B. cereus, B. anth- racis and B. thuringiensis, could not be distin- guished. After successfully inferring the phylo- genies of the Order Bacillales and the genus Bacillus, we have met the resolving limit of this short phy-logenetic marker: B. cereus, B. anthracis and B. thuringiensis.

Share and Cite:

Yakoubou, S. and Côté, J. (2010) Assessment of a short phylogenetic marker based on comparisons of 3’ end 16S rDNA and 5’ end 16S-23S ITS nucleotide sequences of the Bacillus cereus group. Natural Science, 2, 1113-1118. doi: 10.4236/ns.2010.210138.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Claus, D. and Berkeley, R.C.W. (1986) Genus Bacillus Cohn, 1872. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt. J.G., Eds., Bergey’s Manual of Systematic Bac-teriology, The Williams & Wilkins Co., Baltimore, 2, 1105-1139.
[2] Nakamura, L.K. (1998) Bacillus pseudomycoides sp. nov. International Journal of Systematic Bacteriology, 48(3), 1031-1035.
[3] Drobniewski, F.A. (1993) Bacillus cereus and related species. Clinical Microbiology Reviews, 6(4), 324-338.
[4] Schoeni, J.L. and Wong, A.C.L. (2005) Bacillus cereus food poisoning and its toxins. Journal of Food Protection, 68(3), 636-648.
[5] Kramer, J.M. and Gilbert, R.J. (1989) Bacillus cereus and other Bacillus species. In: Doyle, M.P., Ed., Foodborne Bacterial Pathogens, Marcel Dekker, Inc., New York, 21- 50.
[6] Das, T., Choudhury, K., Sharma, S., Jalali, S., Nuthethi, R. and the Endophthalmitis Research Group (2001) Cli- nical profile and outcome in Bacillus endophthalmitis. Ophthalmology, 108(10), 1819-1825.
[7] Le Scanff, J., Mohammedi, J.I., Thiebaut, A., Martin, O., Argaud, L. and Robert, D. (2006) Necrotizing gastroente- ritis due to Bacillus cereus in an immunocompromised patient. Infection, 34(2), 98-99.
[8] Logan, N.A. and De Vos, P. (2009) Genus I. Bacillus Cohn 1872, 174AL. In: De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H. and Whitman, W.B., Eds., Bergey’s Manual of Systematic Bacteriology, 2nd Edition, Springer, New York, 3, 21-128.
[9] Inglesby, T.V., O’Toole, T., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Friedlander, A.M., Gerbe-rding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M.T., Parker, G., Perl, T.M., Russell, P.K. and Tonat, K. (2002) Anthrax as a biological weapon: Updated recom-mendations for management. The Journal of the American Medical Association, 287(17), 2236-2252.
[10] Turnbull, P.C.B. (2002) Introduction: Anthrax history, disease and ecology. In: Koehler, T., Ed., Anthrax, Sp- ringer-Verlag, Berlin, 1-20.
[11] H?fte, H. and Whiteley, H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Re-views, 53(2), 242-255.
[12] Garcia-Robles, I., Sánchez, J., Gruppe, A., Martínez-Ra- mírez, A.C., Rausell, C., Real, M.D. and Bravo, A. (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochemistry and Molecular Biology, 31(9), 849-856.
[13] Feitelson, J.S. (1993) The Bacillus thuringiensis family tree. In: Kim, L., Ed., Advanced Engineered Pesticides, Marcel Dekker Inc., New York, 63-71.
[14] Schnepf, H.E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R. and Dean, D.H., (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806.
[15] Otvos, I.S., Armstrong, H. and Conder, N. (2005) Safety of Bacillus thuringiensis var. kurstaki, applications for insect control to humans and large mammals. In: C?té, J.-C., Otvos, I.S., Schwartz, J.-L. and Vincent, C., Eds., Proceedings of the 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and its Environ-mental Impact. Montréal, 30 October-3 November 2005, 45-59.
[16] Bravo, A., Gill, S.S. and Soberon, M. (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435.
[17] Guillet, P., Chandre F. and Mouchet, J. (1997) L'utili- sation des insecticides en santé publique: état et perspe- ctives. Médecine et Maladies Infectieuses, 27(5), 552- 557.
[18] Lechner, S., Mayr, R., Francis, K.P., Prü?, B.M., Kaplan, T., Wie?ner-Gunkel, E., Stewart Gordon, S.A.B. and Scherer, S. (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. International Journal of Systematic Bacteriology, 48(4), 1373-1382.
[19] Nakamura, L.K. and Jackson, M.A. (1995) Clarification of the taxonomy of Bacillus mycoides. International Jour- nal of Systematic Bacteriology, 45(1), 46-49.
[20] Woese, C.R., Kandler, O. and Wheelis, M.L. (1990) To-wards a natural system of organisms: Proposal for the domains Archea, Bacteria and Eucarya. Proceedings of the National Academy of Sciences, USA, 87(12), 4576- 4579.
[21] Amann, R., Ludwig, W. and Schleifer, K.H. (1995) Phy-logenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Review, 59(1), 143-169.
[22] Cilia, V., Lafay, B. and Christen, R. (1996) Sequence heterogeneities among 16S ribosomal RNA sequences and their effect on phylogenetic analyses at species level. Molecular Biolology and Ecology, 13(3), 451-461.
[23] Goto, K., Omura, T., Hara, Y. and Sadaie, Y. (2000) Ap-plication of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. Journal of General and Applied Microbiology, 46(1), 1-8.
[24] Sacchi, C.T., Whitney, A.M., Mayer, L.W., Morey, R., Steigerwalt, A., Boras, A., Weyant, R.S. and Popovic, T. (2002) Sequencing of 16S rRNA gene: A rapid tool for identification of Bacillus anthracis. Emerging Infectious Disease, 8(10), 1117-1123.
[25] Ash, C., Farrow, J.A. Dorsch, M. Stackebrandt, E. and Collins, M.D. (1991) Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. In-ternational Journal of Systematic Bacteriology, 41(3), 343-346.
[26] Ash, C., Farrow, A.E., Wallbanks, S. and Collins, M.D. (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribo- somal RNA sequences. Letters in Applied Microbiology, 13(4), 202-206.
[27] Vilas-Boas, G.T., Peruca, A.P. and Arantes, O.M. (2007) Biology and taxonomy of Bacillus cereus, Bacillus anth-racis, and Bacillus thuringiensis. Canadian Journal of Microbiology, 53(6), 673-687.
[28] Xu, D. and C?té, J.-C. (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3’ end 16S rDNA and 5’ end 16S-23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology, 53(3), 695-704.
[29] Yakoubou, S., Xu, D. and C?té, J.-C. (2010) Phylogeny of the order Bacillales inferred from 3’ 16S rDNA and 5’ 16S-23S ITS nucleotide sequences. Natural Science, 2(9), 990-997.
[30] Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680.
[31] Saitou, N. and Nei, M. (1987) The neighbor-joining me- thod: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.
[32] Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: Int- egrated software for molecular evolutionary genetics ana- lysis and sequence alignment. Brief Bioinformatic, 5(2), 150-163.
[33] Yakoubou, S. and C?té, J.-C. (2010) Phylogeny of γ-pro- teobacteria inferred from comparisons of 3’ end 16S rRNA gene and 5’ end 16S-23S ITS nucleotide sequences. Na- tural Science, 2(6), 535-543.
[34] Kaneko, T., Nozaki, R. and Aizawa, K. (1978) Deoxyri-bonucleic acid relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Microbiology and Immunology, 22(10), 639-641.
[35] Carlson, C.R., Caugant, D.A. and Kolsto, A.-B. (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Applied and Environmental Micro-biology, 60(6), 1719-1725.
[36] Helgason, E., Caugant, D.A., Olsen, I. and Kolsto, A.-B. (2000) Genetic structure of population of Bacillus cereus and Bacillus thuringiensis isolates associated with peri-odontitis and other human infections. Journal of Clinical Microbiology, 38(4), 1615-1622.
[37] Ticknor, L.O., Kolsto, A.B., Hill, K.K., Keim, P., Laker, M.T., Tonks, M. and Jackson, P.J. (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates, Applied and Environmental Microbiology, 67(10), 4863-4873.
[38] Helgason, E., Tourasse, N.J., Meisal, R., Caugant, D.A. and Kolsto, A.B. (2004) Multilocus sequence typing sch- eme for bacteria of the Bacillus cereus group. Applied and Environmental Microbiology, 70(1), 191-201.
[39] Olsen, J., Skogan, G., Fykse, E., Rawlinson, E., Tomaso, H., Granum, P. and Blatny, J. (2007) Genetic distribution of 295 Bacillus cereus group members based on adk-scr- eening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromo-somal locus in B. anthracis. Journal of Microbiological Methods, 71(3), 265-274.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.