Magnetism of Co13-Filled Carbon Nanotubes of Diverse Chiral Symmetry
Andrew Kuznetsov
ATG:biosynthetics, Merzhausen, Germany.
DOI: 10.4236/jmp.2013.43A058   PDF    HTML   XML   6,244 Downloads   10,112 Views   Citations

Abstract

The attempt to study magnetism in (n,m) chiral space of single-walled carbon nanotubes (SWNTs) with embedded metal cluster is presented. Co13 metallic cluster inside zigzag and chiral single-walled nanotubes was investigated using density functional theory (DFT). Magnetic properties of the endohedral nanotubes with the various chiral index (n,m) were characterized by calculation of the total spin magnetic moment (S). The dependence of S on the chiral symmetry of nanotubes, as well as the orientation of Co13 cluster within nanotubes was found. Longitudinal orientation of icosahedral Co13 cluster was preferable for magnetization in general. However, it was shown that the magnetic landscape M = f(n,m) of endohedral nanotubes is very complex and sharp.

Share and Cite:

A. Kuznetsov, "Magnetism of Co13-Filled Carbon Nanotubes of Diverse Chiral Symmetry," Journal of Modern Physics, Vol. 4 No. 3A, 2013, pp. 418-421. doi: 10.4236/jmp.2013.43A058.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. L. Rodriguez-Lopez, F. Aguilera-Granja, K. Michaelian and A. Vega, “Structure and Magnetism of Cobalt Clusters,” Physical Review B, Vol. 67, No. 17, 2003, Article ID: 174413. doi:10.1103/PhysRevB.67.174413
[2] F. Lopez-Urias, E. Cruz-Silva, E. Munoz-Sandoval, M. Torrones and H. Terrones, “Magnetic Properties of Individual Carbon Clusters, Clusters inside Fullerenes and Graphitic Nanoribbons,” Journal of Material Chemistry, Vol. 18, No. 13, 2008, pp. 1535-1541. doi:10.1039/b716752k
[3] S. Blügel and G. Bihlmayer, “Magnetism of Low-Dimensional Systems: Theory,” In: H. Kronmüller and S. S. P. Parkin, Eds., Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons Ltd., Chichester, 2006, pp. 598-640.
[4] S. Sahoo, “Ab Initio Study of Free and Deposited Transition Metal Clusters,” Ph.D. Dissertation, Fakultat für Physik der Universitat Duisburg-Essen, 2011. http://duepublico.uni-duisburg-essen.de/servlets/DerivateSerlet/Derivate-28204/Dissertation-Sanjubala_Sahoo.pdf
[5] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfulleren,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163. doi:10.1038/318162a0
[6] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[7] M. P. Johansson, J. Jusélius and D. Sundholm, “Sphere Currents of Buckminsterfullerene,” Angewandte Chemie International Edition, Vol. 44, No. 12, 2005, pp. 1843-1846. doi:10.1002/anie.200462348
[8] X. Lu and Z. Chen, “Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (C60) and Single-Walled Carbon Nanotubes,” Chemical Reviews, Vol. 105, No. 10, 2005, pp. 3643-3696. doi:10.1021/cr030093d
[9] S. Hong and S. Myung, “Nanotube Electronics: A Flexible Approach to Mobility,” Nature Nanotechnology, Vol. 2, No. 4, 2007, pp. 207-208. doi:10.1038/nnano.2007.89
[10] J.-C. Charlier, X. Blasé and S. Roche, “Electronic and Transport Properties of Nanotubes,” Reviews of Modern Physics, Vol. 79, No. 2, 2007, pp. 677-732. doi:10.1103/RevModPhys.79.677
[11] T. Makarova and P. Fernando, “Carbon-Based Magnetism: An Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials,” Elsevier, Oxford, 2006.
[12] J. Kolosnjaj, H. Szwarc and F. Moussa, “Toxicity Studies of Carbon Nanotubes,” Advances in Experimental Medicine and Biology, Vol. 620, 2007, pp. 181-204. doi:10.1007/978-0-387-76713-0_14
[13] A. Kuznetsov, “From Carbides to Co5 and Co13 Metallofullerenes: First-Principles Study and Design,” American Journal of Biomedical Engineering, Vol. 2, No. 1, 2012, pp. 32-38. doi:10.5923/j.ajbe.20120201.05
[14] A. Kuznetsov, “Magnetic Properties of Endohedral Complexes Co5@Cn Depending upon the Size and Symmetry of Fullerenes as Well as Orientation of Cobalt Cluster,” Computational Materials Science, Vol. 54, 2012, pp. 204-207. doi:10.1016/j.commatsci.2011.09.034
[15] M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, “Science of Fullerenes and Carbon Nanotubes,” Academic Press, San Diego, 1996.
[16] V. V. Ivanovskaya, C. K?hler and G. Seifert, “3d Metal Nanowires and Clusters inside Carbon Nanotubes: Structural, Electronic, and Magnetic Properties,” Physical Review B, Vol. 75, No. 7, 2007, Article ID: 075410. doi:10.1103/PhysRevB.75.075410
[17] P. Susmita, C. Sayan, P. Manh-Huong, M. Pritish and S. Hariharan, “Carbon Nano Straws: Nanotubes Filled with Superparamagnetic Nanoparticles,” Nanotechnology, Vol. 20, 2009, Article ID: 485604. doi:10.1088/0957-4484/20/48/485604
[18] S. Melchor and J. A. Dobado, “CoNTube: An Algorithm for Connecting Two Arbitrary Carbon Nanotubes,” Journal of Chemical Information and Computing Science, Vol. 44, No. 5, 2004, pp. 1639-1646. doi:10.1021/ci049857w
[19] CoNTub, http://www.ugr.es/local/gmdm/java/contub/contub.html
[20] N. Guex and M. C. Peitsch, “Swiss-Pdb Viewer: A Fast and Easy-to-Use PDB Viewer for Macintosh and PC,” Protein Data Bank Quaterly Newsletter, Vol. 77, 1996, p. 7.
[21] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review B, Vol. 136, No. 3B, 1964, pp. 864-871. doi:10.1103/PhysRev.136.B864
[22] T. Ozaki, “Variationally Optimized Atomic Orbitals for Large-Scale Electronic Structures,” Physical Review B, Vol. 67, No. 15, 2003, Article ID: 155108. doi:10.1103/PhysRevB.67.155108
[23] T. Ozaki and H. Kino, “Numerical Atomic Basis Orbitals from H to Kr,” Physical Review B, Vol. 69, No. 19, 2004, Article ID: 195113. doi:10.1103/PhysRevB.69.195113
[24] T. Ozaki and H. Kino, “Efficient Projector Expansion for the ab Initio LCAO Method,” Physical Review B, Vol. 72, No. 4, 2005, Article ID: 045121. doi:10.1103/PhysRevB.72.045121
[25] OpenMX, http://www.openmx-square.org/
[26] D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Physical Review Letters, Vol. 45, No. 7, 1980, pp. 566-569. doi:10.1103/PhysRevLett.45.566
[27] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[28] S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta and A. Mookerjee, “Structure, Bonding, and Magnetism of Cobalt Clusters from First-Principles Calculations,” Physical Review B, Vol. 76, No. 1, 2007, Article ID: 014429. doi:10.1103/PhysRevB.76.014429
[29] S. Blügel, “Magnetism at the Nanoscale (Lecture),” Spring College on Computational Nanoscience, Trieste, 2010.
[30] X. Ma, Y. Cai, N. Lun, Q. Ao, S. Li, F. Li and S. Wen, “Microstructural Features of Co-Filled Carbon Nanotubes,” Material Letters, Vol. 57, No. 19, 2003, pp. 2879-2884. doi:10.1016/S0167-577X(02)01391-5
[31] C.-K. Yang, J. Zhao and J. P. Lu, “Magnetism of Transition-Metal/Carbon-Nanotube Hybrid Structures,” Physical Review Letters, Vol. 90, No. 25, 2003, Article ID: 257203. doi:10.1103/PhysRevLett.90.257203
[32] V. A. Basiuk and S. Irle, “DFT Calculations on Fullerenes and Carbon Nanotubes,” Research Signpost, Trivandrum, 2008.
[33] M. S. Dresselhaus, G. Dresselhaus and P. Avouris, “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Springer, Berlin, 2001. doi:10.1007/3-540-39947-X

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.