Temperature Dependence of Density and Thermal Expansion of Wrought Aluminum Alloys 7041, 7075 and 7095 by Gamma Ray Attenuation Method

Abstract

The gamma quanta attenuation studies have been carried out to determine mass attenuation coefficients of 7041, 7075 and 7095 wrought aluminum alloys. The temperature dependence of linear attenuation coefficient, density and thermal expansion of these wrought aluminum alloys in the temperature range 300 K - 850 K have been reported. The measurements were done by using a gamma ray densitometer designed and fabricated in our laboratory. The data on variation of density and linear thermal expansion with temperature have been represented by linear equations. Volume thermal expansion coefficients have been reported.

Share and Cite:

K. Narender, A. Rao, K. Rao and N. Krishna, "Temperature Dependence of Density and Thermal Expansion of Wrought Aluminum Alloys 7041, 7075 and 7095 by Gamma Ray Attenuation Method," Journal of Modern Physics, Vol. 4 No. 3, 2013, pp. 331-336. doi: 10.4236/jmp.2013.43045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. K. Srivastava and H. D. Merchant, “Thermal Expansion of Alkali Hallides above 300 K,” Journal of Physics and Chemistry of Solids, Vol. 34, No. 12, 1973, pp. 2069-2073. doi:10.1016/S0022-3697(73)80055-1
[2] V. T. Deshpande, “Thermal Expansion of Sodium Flouride and Sodium Bromide,” Acta Crystallographica, Vol. 14, 1961, p. 794. doi:10.1107/S0365110X61002357
[3] G. K. White, “The Thermal Expansion of Alkali Hallides at Low Temperatures,” Proceedings of the Royal Society London, Vol. A286, No. 1405, 1965, pp. 204-217. doi:10.1098/rspa.1965.0139
[4] G. K. White and J. G. Collins, “The Thermal Expansion of Alkali Halides at Low Temperatures. II. Sodium, Rubidium and Caesium Halides,” Proceedings of the Royal Society London, Vol. A333, No. 1593, 1973, pp. 237-259. doi:10.1098/rspa.1973.0060
[5] P. P. M. Meincke and G. M. Graham, “The Thermal Expansion of Alkali Halides,” Canadian Journal of Physics, Vol. 43, No. 10, 1965, pp. 1853-1866.
[6] A. M. Sherry and M. Kumar, “Analysis of Thermal Expansion for Alkalihalide Crystals Using the Isobaric Equation of State,” Journal of Physics and Chemistry of Solids, Vol. 52, No. 9, 1991, pp. 1145-1148. doi:10.1016/0022-3697(91)90047-4
[7] M. Kumar and S. P. Upadhyay, “Analysis of the Thermal Expansion Coefficient and It’s Temperature Dependence for Alkali Halides,” Physical Status Solidi, Vol. 181, No. 1, 1994, pp. 55-61.
[8] K. Wang and R. R. Reeber, “Thermal Expansion of Al- kali Halides at High Pressure: NaCl as an Example,” Physics and Chemistry of Minerals, Vol. 23, No. 6, 1996, pp. 254-360. doi:10.1007/BF00199501
[9] M. Kumar and S. P. Upadhyay, “Pressure Dependence of Thermal Expansivity for Alkali Halides,” Journal of Physics and Chemistry of Solids, Vol. 54, No. 6, 1993, pp. 773-777. doi:10.1016/0022-3697(93)90140-M
[10] J. F. Vetelino, K. V. Namjoshi and S. S. Mitra, “Mode-Gruneisen Parameters and Thermalexpansion Coefficient of NaCl, CsCl, and Zinc-Blende-Type Crystals,” Journal of Applied Physics, Vol. 1, 1973.
[11] L. M. Thomas and J. Shanker, “Temperature Dependence of Elastic Constants and Thermal Expansion Coefficient for NaCl Crystals,” Physica Status Solidi, Vol. 195, No. 2, 2006, pp. 361-366.
[12] Z.-H. Fang, “Temperature Dependence of Inter Atomic Separation for Alkali Halides,” Physica Status Solidi, Vol. 241, No. 13, 2004.
[13] C. H. Nie, S. Y. Huang and W. Huang, “Temperature Dependence of Anderson Gruneisen Parameter for NaCl,” Applied Physics Research, Vol. 2, No. 1, 2010.
[14] W. D. Drotning, “Liquid Metals Zinc, Cadmium and Mercury,” Journal of the Less-Common Metals, Vol. 96, 1984, pp. 223-227. doi:10.1016/0022-5088(84)90198-X
[15] W. D. Drotning, “Thermal Expansion Glasses in the Solid and Liquid Phases,” International Journal of Thermo- physics, Vol. 6, No. 6, 1985, pp. 705-714. doi:10.1007/BF00500341
[16] L. W. Wang, Q. Wang, A. P. Xian and K. Q. Lu, “Precise Measurement of the Densities of Liquid Bi, Sn, Pb and Sb,” Journal of Physics: Condensed Matter, Vol. 15, No. 6, 2003, pp. 777-783. doi:10.1088/0953-8984/15/6/304
[17] S. V. Stankus, R. A. Khairulin, A. G. Mozgovoy, V. V. Roshchupkin and M. A. Pokrasin, “An Experimental Investigation of the Density of Bismuth in the Condensed State in a Wide Temperature Range,” High Temperature, Vol. 43, No. 3, 2005, pp. 368-378. doi:10.1007/s10740-005-0075-7
[18] S. V. Stankus and P. V. Tyagel’skii, “Density of High Purity Dysprosium in the Solid and Liquid States,” High Temperature, Vol. 38, No. 4, 2000, pp. 579-583.
[19] S. V. Stankus, R. A. Khairulin and A. G. Mozgovoy, “Ex perimental Study of Density and Thermal Expansion of the Advanced Materials and Heat Transfer Agents for Liquid Metal Systems of Thermonuclear Reactor: Lithium,” High Temperature, Vol. 49, No. 2, 2011, pp. 187- 192. doi:10.1134/S0018151X11010214
[20] S. V. Stankus, R. A. Khairulin and A. G. Mozgovoy, V. V. Roshchupkin and M. A. Pokrasin, “The Density and Thermal Expansion of Eutectic Alloys of Lead with Bismuth and Lithium in Condensed State,” Journal of Phys ics: Conference Series, Vol. 98, No. 6, 2008, Article ID: 062017. doi:10.1088/1742-6596/98/6/062017
[21] R. A. Khairulin, S. V. Stankus, R. N. Abdullaev, Yu. A. Plevachuk and K. Yu. Shunyaev, “The Density of the Binary Diffusion Coefficients of Sliver-Tin Melts,” Thermophysics Aeromechanics, Vol. 17, No. 3, 2010, pp. 391- 396.
[22] R. A. Khairulin and S. V. Stankus, “The Density of Alloys of Tin-Lead System in the Solid and Liquid States,” High Temperature, Vol. 44, 2006, pp. 389-395. doi:10.1007/s10740-006-0048-5
[23] S. V. Stankus, R. A. Khairulin and A. S. Kosheleva, “Thermal Properties of Liquid Alloys of Magnesium-Lead System,” Thermophysics Aeromechanics, Vol. 14, No. 1, 2007, pp. 75-80.
[24] T Hupf, C. Cagran, E. Kachnitz and G. Pottlacher, “Thermophysical Properties of Ni80Cr20,” Thermochimica Acta, Vol. 494, No. 1-2, 2009, pp. 40-43. doi:10.1016/j.tca.2009.04.015
[25] D. E. Burkes, C. A. Papesh, A. P. Maddison, T. Hartmann and F. J. Rice, “Thermo Physical Properties of DU-10 wt% Mo Alloys,” Journal of Nuclear Materials, Vol. 403, No. 1-3, 2010, pp. 160-166.
[26] S. V. Stankus and R. A. Khairulin, “Density and Phase Diagram of Magnesium-Lead System in the Region of Mg2 Pb Intermetallic Compound,” Thermochimica Acta, Vol. 474, No. 1-2, 2008, pp. 52-56. doi:10.1016/j.tca.2008.05.011
[27] X. M. Chen, Q. Wang and K. Q. Lu, “Temperature and Time Dependence of Density of Molten Indium Antimonide Measured by Improved Archimedean Method,” Journal of Physics: Condensed Matter, Vol. 11, No. 50, 1999, pp. 10335-10341. doi:10.1088/0953-8984/11/50/325
[28] W. D. Drotning, “Thermal Expansion of Solid at High Temperature by the Gamma Attenuation Technique,” Review of Scientific Instruments, Vol. 50, No. 12, 1979, pp. 12, Article ID: 121567.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.