Share This Article:

Signaling Networks Controlling HCC Onset and Progression: Influence of Microenvironment and Implications for Cancer Gene Therapy

Full-Text HTML XML Download Download as PDF (Size:175KB) PP. 353-358
DOI: 10.4236/jct.2013.42A042    3,113 Downloads   5,221 Views  

ABSTRACT

Hepatocarcinogenesis, as other epithelial malignancies, has been proved to be a multistep process that, starting from mutagenic events, allows the transformed liver cell to evolve towards a more aggressive phenotype, characterized by the acquisition of migratory/invasive and stem-cell-like properties. Hepatocellular carcinoma(HCC)can originate from both mature hepatocytes and liver precursor/stem cells. Whatever its origin, a common feature of advanced-stage HCC is the reduction or lack of expression of master genes of epithelial/hepatocyte differentiation, i.e. members of the liver enriched transcription factors(LEFTs)family like HNF4α, and conversely an increased expression of epithelial-to-mesenchymal transition(EMT)master genes, i.e. the transcriptional repressors belonging to the Snail family. Recently, it has emerged as members of these families are capable to directly repress each other and to regulate in opposite manner target genes involved in stemness and in hepatocyte differentiation, thus influencing cell outcome between epithelial/differentiated/poor aggressive and mesenchymal/undifferentiated/aggressive phenotype. Consequently, the restoration of LEFT functions in invasive HCC could represent an important goal for anti-cancer therapies. However, any strategy based on gene transfer needs to take in account the influence of micro-environmental factors in HCC tumor niche, like TGFb, responsible for shifting the described balance in tumor cell towards the acquisition of stem-cell like properties and invasiveness, through Snail/EMT induction and LEFTs downregulation. The presence of this cytokine, indeed, was shown to override both anti-EMT and tumor suppressor activity of the ectopically expressed HNF4α protein. In this review, the rationale to propose implementation of HCC gene therapy will be discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Marchetti, C. Cicchini, L. Santangelo, A. Cozzolino, V. Costa, M. Tripodi and L. Amicone, "Signaling Networks Controlling HCC Onset and Progression: Influence of Microenvironment and Implications for Cancer Gene Therapy," Journal of Cancer Therapy, Vol. 4 No. 2A, 2013, pp. 353-358. doi: 10.4236/jct.2013.42A042.

References

[1] S. S. Thorgeirsson and J. W. Grisham, “Molecular Pathogenesis of Human Hepatocellular Carcinoma,” Nature Genetics, Vol. 31, No. 4, 2002, pp. 339-346. doi:10.1038/ng0802-339
[2] S. Imbeaud, Y. Ladeiro and J. Zucman-Rossi, “Identification of Novel Oncogenes and Tumor Suppressors in Hepatocellular Carcinoma,” Seminars in Liver Disease, Vol. 30, No. 1, 2010, pp. 75-86. doi:10.1055/s-0030-1247134
[3] K. Endo, T. Ueda, J. Ueyama, T. Ohta and T. Terada, “Immunoreactive E-Cadherin, Alpha-Catenin, Beta-Catenin, and Gamma-Catenin Proteins in Hepatocellular Carcinoma: Relationships with Tumor Grade, Clinicopathologic Parameters, and Patients’ Survival,” Human pathology, Vol. 31, No. 5, 2000, pp. 558-565. doi:10.1053/hp.2000.6683
[4] F. van Zijl, G. Zulehner, M. Petz, D. Schneller, C. Kornauth, M. Hau, et al., “Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma,” Future Oncology, Vol. 5, No. 8, 2009, pp. 1169-1179. doi:10.2217/fon.09.91
[5] J. P. Thiery, “Epithelial-Mesenchymal Transitions in Tumour Progression,” Nature Reviews Cancer, Vol. 2, No. 6, 2002, pp. 442-454. doi:10.1038/nrc822
[6] T. Brabletz, F. Hlubek, S. Spaderna, O. Schmalhofer, E. Hiendlmeyer, A. Jung, et al., “Invasion and Metastasis in Colorectal Cancer: Epithelial-Mesenchymal Transition, Mesenchymal-Epithelial Transition, Stem Cells and Beta-Catenin,” Cells, Tissues, Organs, Vol. 179, No. 1-2, 2005, pp. 56-65. doi:10.1159/000084509
[7] K. Polyak and R. A. Weinberg, “Transitions between Epithelial and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits,” Nature Reviews Cancer, Vol. 9, No. 4, 2009, pp. 265-273. doi:10.1038/nrc2620
[8] M. A. Nieto, “The Snail Superfamily of Zinc-Finger Transcription Factors,” Nature Reviews Molecular Cell Biology, Vol. 3, No. 3, 2002, pp. 155-166. doi:10.1038/nrm757
[9] C. Cicchini, D. Filippini, S. Coen, A. Marchetti, C. Cavallari, I. Laudadio, et al., “Snail Controls Differentiation of Hepatocytes by Repressing HNF4alpha Expression,” Journal of cellular physiology, Vol. 209, No. 1, 2006, No. 230-238. doi:10.1002/jcp.20730
[10] A. Cano, M. A. Perez-Moreno, I. Rodrigo, A. Locascio, M. J. Blanco, M. G. del Barrio, et al., “The Transcription Factor Snail Controls Epithelial-Mesenchymal Transitions by Repressing E-Cadherin Expression,” Nature cell boilogy, Vol. 2, No. 2, 2000, pp. 76-83. doi:10.1038/35000025
[11] W. C. Tsai, P. W. Hsu, T. C. Lai, G. Y. Chau, C. W. Lin, C. M. Chen, et al., “MicroRNA-122, a Tumor Suppressor microRNA That Regulates Intrahepatic Metastasis of Hepatocellular Carcinoma,” Hepatology, Vol. 49, No. 5, 2009, pp. 1571-1582. doi:10.1002/hep.22806
[12] S. M. Park, A. B. Gaur, E. Lengyel and M. E. Peter, “The miR-200 Family Determines the Epithelial Phenotype of Cancer Cells by Targeting the E-Cadherin Repressors ZEB1 and ZEB2,” Genes & Development, Vol. 23, No. 11, 2008, pp. 894-907. doi:10.1101/gad.1640608
[13] H. Siemens, R. Jackstadt, S. Hunten, M. Kaller, A. Menssen, U. Gotz, et al., “miR-34 and SNAIL form a Double-Negative Feedback Loop to Regulate Epithelial-Mesenchymal Transitions,” Cell Cycle, Vol. 10, No. 24, 2011, pp. 4256-4271. doi:10.4161/cc.10.24.18552
[14] C. J. Chang, C. H. Chao, W. Xia, J. Y. Yang, Y. Xiong, C. W. Li, et al., “p53 Regulates Epithelial-Mesenchymal Transition and Stem Cell Properties through Modulating miRNAs,” Nature Cell Biology, Vol. 13, No. 3, 2011, pp. 317-323. doi:10.1038/ncb2173
[15] N. H. Kim, H. S. Kim, X. Y. Li, I. Lee, H. S. Choi, S. E. Kang, et al., “A p53/miRNA-34 Axis Regulates Snail1-Dependent Cancer Cell Epithelial-Mesenchymal Transition,” The Journal of Cell Biology, Vol. 195, No. 3, 2011, pp. 417-433. doi:10.1083/jcb.201103097
[16] T. Kim, A. Veronese, F. Pichiorri, T. J. Lee, Y. J. Jeon, S. Volinia, et al., “p53 Regulates Epithelial-Mesenchymal Transition through microRNAs Targeting ZEB1 and ZEB2,” The Journal of Experimental Medicine, Vol. 208, No. 5, 2011, pp. 875-883. doi:10.1084/jem.20110235
[17] M. A. Huber, N. Kraut and H. Beug, “Molecular Requirements for Epithelial-Mesenchymal Transition during Tumor Progression,” Current Opinion in Cell Biology, Vol. 17, No. 5, 2005, pp. 548-558. doi:10.1016/j.ceb.2005.08.001
[18] E. Batlle, E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, et al., “The Transcription Factor Snail Is a Repressor of E-Cadherin Gene Expression in Epithelial Tumour Cells,” Nature Cell Biology, Vol. 2, No. 2, 2000, pp. 84-89. doi:10.1038/35000034
[19] L. Santangelo, A. Marchetti, C. Cicchini, A. Conigliaro, B. Conti, C. Mancone, et al., “The Stable Repression of Mesenchymal Program Is Required for Hepatocyte Identity: A Novel Role for Hepatocyte Nuclear Factor 4alpha,” Hepatology, Vol. 53, No. 6, 2011, pp. 2063-2074. doi:10.1002/hep.24280
[20] L. Pelletier, S. Rebouissou, D. Vignjevic, P. Bioulac-Sage and J. Zucman-Rossi, “HNF1alpha Inhibition Triggers Epithelial-Mesenchymal Transition in Human Liver Cancer Cell Lines,” BMC Cancer, Vol. 11, 2011, p. 427. doi:10.1186/1471-2407-11-427
[21] F. Garibaldi, C. Cicchini, A. Conigliaro, L. Santangelo, A. M. Cozzolino, G. Grassi, et al., “An Epistatic Mini-Circuitry between the Transcription Factors Snail and HNF-4alpha Controls Liver Stem Cell and Hepatocyte Features Exhorting Opposite Regulation on Stemness-Inhibiting microRNAs,” Cell Death and Differentiation, Vol. 19, 2012, pp. 937-946. doi:10.1038/cdd.2011.175
[22] A. Conigliaro, M. Colletti, C. Cicchini, M. T. Guerra, R. Manfredini, R. Zini, et al., “Isolation and Characterization of a Murine Resident Liver Stem Cell,” Cell Death and Differentiation, Vol. 15, No. 1, 2008, pp. 123-133. doi:10.1038/sj.cdd.4402236
[23] D. Padua and J. Massague, “Roles of TGFbeta in Metastasis,” Cell Research, Vol. 19, No. 1, 2009, pp. 89-102. doi:10.1038/cr.2008.316
[24] D. Lee, Y. H. Chung, J. A. Kim, Y. S. Lee, M. K. Jang, K. M. Kim, et al., “Transforming Growth Factor Beta 1 Over-expression Is Closely Related to Invasiveness of Hepatocellular Carcinoma,” Oncology, Vol. 82, No. 1, 2012, pp. 11-18. doi:10.1159/000335605
[25] Y. Shirai, S. Kawata, S. Tamura, N. Ito, H. Tsushima, K. Takaishi, et al., “Plasma Transforming Growth Factor-Beta 1 in Patients with Hepatocellular Carcinoma. Comparison with Chronic Liver Diseases,” Cancer, Vol. 73, No. 9, 1994, pp. 2275-2279. doi:10.1002/1097-0142(19940501)73:9<2275::AID-CNCR2820730907>3.0.CO;2-T
[26] N. Ito, S. Kawata, S. Tamura, Y. Shirai, S. Kiso, H. Tsushima, et al., “Positive Correlation of Plasma Transforming Growth Factor-Beta 1 Levels with Tumor Vascularity in Hepatocellular Carcinoma,” Cancer Letters, Vol. 89, No. 1, 1995, pp. 45-48.
[27] N. Ito, S. Kawata, S. Tamura, K. Takaishi, Y. Shirai, S. Kiso, et al., “Elevated Levels of Transforming Growth Factor Beta Messenger RNA and Its Polypeptide in Human Hepatocellular Carcinoma,” Cancer Research, Vol. 51, No. 15, 1991, pp. 4080-4083.
[28] K. Matsuzaki, M. Date, F. Furukawa, Y. Tahashi, M. Matsushita, K. Sakitani, et al., “Autocrine Stimulatory Mechanism by Transforming Growth Factor Beta in Human Hepatocellular Carcinoma,” Cancer Research, Vol. 60, No. 5, 2000, pp. 1394-1402.
[29] J. Xu, S. Lamouille and R. Derynck, “TGF-Beta-Induced Epithelial to Mesenchymal Transition,” Cell Research, Vol. 19, No. 2, 2009, pp. 156-172. doi:10.1038/cr.2009.5
[30] J. Fuxe, T. Vincent and A. Garcia de Herreros, “Transcriptional Crosstalk between TGF-Beta and Stem Cell Pathways in Tumor Cell Invasion: Role of EMT Promoting Smad Complexes,” Cell Cycle, Vol. 9, No. 12, 2010, pp. 2363-2374. doi:10.4161/cc.9.12.12050
[31] L. Caja, E. Bertran, J. Campbell, N. Fausto and I. Fabregat, “The Transforming Growth Factor-Beta (TGF-Beta) Mediates Acquisition of a Mesenchymal Stem Cell-Like Phenotype in Human Liver Cells,” Journal of Cellular Physiology, Vol. 226, No. 5, 2011, pp. 1214-1223. doi:10.1002/jcp.22439
[32] R. Derynck, R. J. Akhurst and A. Balmain, “TGF-Beta Signaling in Tumor Suppression and Cancer Progression,” Nature Genetics, Vol. 29, No. 2, 2001, pp. 117-129. doi:10.1038/ng1001-117
[33] Y. N. Kim, K. H. Koo, J. Y. Sung, U. J. Yun and H. Kim, “Anoikis Resistance: An Essential Prerequisite for Tumor Metastasis,” International Journal of Cell Biology, Vol. 2012, 2012, Article ID: 306879. doi:10.1155/2012/306879
[34] J. Massague, “TGFbeta in Cancer,” Cell, Vol. 134, No. 2, 2008, pp. 215-230. doi:10.1016/j.cell.2008.07.001
[35] J. Zavadil, M. Bitzer, D. Liang, Y. C. Yang, A. Massimi, S. Kneitz, et al., “Genetic Programs of Epithelial Cell Plasticity Directed by Transforming Growth Factor-Beta,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 12, 2001, pp. 6686-6691. doi:10.1073/pnas.111614398
[36] J. Zavadil and E. P. Bottinger, “TGF-Beta and Epithelial-to-Mesenchymal Transitions,” Oncogene, Vol. 24, No. 37, 2005, pp. 5764-5774. doi:10.1038/sj.onc.1208927
[37] B. Ozdamar, R. Bose, M. Barrios-Rodiles, H. R. Wang, Y. Zhang and J. L. Wrana, “Regulation of the Polarity Protein Par6 by TGFbeta Receptors Controls Epithelial Cell Plasticity,” Science, Vol. 307, No. 5715, 2005, pp. 1603-1609. doi:10.1126/science.1105718
[38] S. Thuault, E. J. Tan, H. Peinado, A. Cano, C. H. Heldin and A. Moustakas, “HMGA2 and Smads Co-Regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition,” The Journal of Biological Chemistry, Vol. 283, No. 48, 2008, pp. 33437-33446. doi:10.1074/jbc.M802016200
[39] B. P. Zhou, J. Deng, W. Xia, J. Xu, Y. M. Li, M. Gunduz, et al., “Dual Regulation of Snail by GSK-3beta-Mediated Phosphorylation in Control of Epithelial-Mesenchymal Transition,” Nature Cell Biology, Vol. 6, No. 10, 2004, pp. 931-940. doi:10.1038/ncb1173
[40] A. Marchetti, M. Colletti, A. M. Cozzolino, C. Steindler, M. Lunadei, C. Mancone, et al., “ERK5/MAPK Is Activated by TGFbeta in Hepatocytes and Required for the GSK-3beta-Mediated Snail Protein Stabilization,” Cellular Signalling, Vol. 20, No. 11, 2008, pp. 2113-2118. doi:10.1016/j.cellsig.2008.08.002
[41] A. M. Cozzolino, T. Alonzi, L. Santangelo, C. Mancone, B. Conti, C. Steindler, et al., “TGFbeta Overrides HNF-4alpha Tumor Suppressing Activity through GSK3beta Inactivation: Implication for Hepatocellular Carcinoma Gene Therapy,” Journal of Hepatology, Vol. 58, No. 1, 2012, pp. 65-72. doi:10.1016/j.jhep.2012.08.023
[42] A. Miyoshi, Y. Kitajima, S. Kido, T. Shimonishi, S. Matsuyama, K. Kitahara, et al., “Snail Accelerates Cancer Invasion by Upregulating MMP Expression and Is Associated with Poor Prognosis of Hepatocellular Carcinoma,” British Journal of Cancer, Vol. 92, No. 2, 2005, pp. 252-258.
[43] N. L. Lazarevich, O. A. Cheremnova, E. V. Varga, D. A. Ovchinnikov, E. I. Kudrjavtseva, O. V. Morozova, et al., “Progression of HCC in Mice Is Associated with a Down-Regulation in the Expression of Hepatocyte Nuclear Factors,” Hepatology, Vol. 39, No. 4, 2004, pp. 1038-1047. doi:10.1002/hep.20155
[44] C. Yin, Y. Lin, X. Zhang, Y. X. Chen, X. Zeng, H. Y. Yue, et al., “Differentiation Therapy of Hepatocellular Carcinoma in Mice with Recombinant Adenovirus Carrying Hepatocyte Nuclear Factor-4alpha Gene,” Hepatology, Vol. 48, No. 5, 2008, pp. 1528-1539. doi:10.1002/hep.22510
[45] B. F. Ning, J. Ding, C. Yin, W. Zhong, K. Wu, X. Zeng, et al., “Hepatocyte Nuclear Factor 4alpha Suppresses the Development of Hepatocellular Carcinoma,” Cancer Research, Vol. 70, No. 19, 2010, pp. 7640-7651. doi:10.1158/0008-5472.CAN-10-0824
[46] H. Y. Yue, C. Yin, J. L. Hou, X. Zeng, Y. X. Chen, W. Zhong, et al., “Hepatocyte Nuclear Factor 4alpha Attenuates Hepatic Fibrosis in Rats,” Gut, Vol. 59, No. 2, 2010, pp. 236-246. doi:10.1136/gut.2008.174904

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.