Share This Article:

Graphene-Semiconductor Quantum Well with Asymmetric Energy Gaps

Full-Text HTML XML Download Download as PDF (Size:255KB) PP. 67-72
DOI: 10.4236/wjcmp.2013.31012    3,199 Downloads   5,544 Views   Citations

ABSTRACT

Semiconductor solar cell (PV cell) has been widely used for generating solar electricity. However, the high cost and severe pollution limits its application. Recently the discovery of graphene may open a door to fabricate a novel solar cell with lower cost and more environmentally friendly. Our proposed solar cell device consists of a graphene strip and two semiconductor strips with different energy gaps attached to the two edges of the graphene strip on a flat plane. This structure is a two-dimensional quantum well. The energy bands of graphene can be described by a two-dimensional Dirac equation centered on hexagonal corners (Dirac points) of the honeycomb lattice Brillouin zone. The 2 D Dirac equation has been solved numerically in this paper. The results indicate that the graphene quantum well possesses very dense quantum energy states which imply that quantum well of this type can absorb sun light with more different frequencies. If we use graphene quantum well to fabricate the photo voltaic cell, the efficiency of converting solar energy to electricity will be enhanced.

 

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Wang, D. Guo, G. Zhao, J. Chen, Z. Sun and A. Ignatiev, "Graphene-Semiconductor Quantum Well with Asymmetric Energy Gaps," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 67-72. doi: 10.4236/wjcmp.2013.31012.

References

[1] L.-P. An, T.-B. Wang, and N.-H. Liu, “Inter-Well Coupling and Resonant Tunneling Modes of Multiple Graphene Quantum Wells”, Communications in Theoretical Physics, Vol. 56, No. 2, 2011, pp. 367-372. doi:10.1088/0253-6102/56/2/29
[2] J. M. Pereira Jr, V. Mlinar and F. M. Peeters, “Confined States and Direction-Dependent Transmission in Graphene Quantum Wells,” Physical Review B, Vol. 74, No. 4, 2006, pp. 1-5.
[3] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, Vol. 71, No. 9, 1947, pp. 622-634. doi:10.1103/PhysRev.71.622
[4] M. Wilson, Physics Today, 2006, p. 21.
[5] G. W. Semenoff, “Condensed-Matter Simulation of a Three-Dimensional Anomaly,” Physical Review Letters, Vol. 53, No. 26, 1984, pp. 2449-2452. doi:10.1103/PhysRevLett.53.2449c
[6] I. A. Luk’yanchuk and Y. Kopelevich, “Phase Analysis of Quantum Oscillations in Graphite,” Physical Review Letters, Vol. 93, No. 16, 2004, pp. 166402-166406. doi:10.1103/PhysRevLett.93.166402
[7] L. A. ponomarenko, F. Schedin, M. I. Katsnelson, et al., Science, Vol. 320, 2008, p. 356.
[8] T. Ando, J. Phys. Soc. Jpn. Vol. 74, No. , 2005, pp. 777. doi:10.1143/JPSJ.74.777
[9] P. V. Ratnikov and A. P. Silin, “Quantum Well Based on Graphene and Narrow-Gap Semiconductors,” Bulletin of the Lebedev Physics Institute, Vol. 36, No. 2, 2009, pp. 34-43. doi:10.3103/S106833560902002X
[10] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature, Vol. 438, 2005, p. 197.
[11] Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature, Vol. 438, 2005, p. 201. doi:10.1038/nature04235
[12] L. Brey and H. A. Fertig, “Electronic States of Graphene Nanoribbons Studied with the Dirac Equation,” Physical Review B, Vol. 73, No. 23, 2006, pp. 235411-235416. doi:10.1103/PhysRevB.73.235411
[13] L. Brey and H. A. Fertig, “Elementary Electronic Excitations in Graphene Nanoribbons,” Physical Review B, Vol. 75, No. 12, 2007, pp. 125434-125440. doi:10.1103/PhysRevB.75.125434
[14] Y.-W. Son, M. L. Cohen and S. G. Louie, “Energy Gaps in Graphene Nanoribbons,” Physical Review Letters, Vol. 97, No. 21, 2006, pp. 216803-216807. doi:10.1103/PhysRevLett.97.216803
[15] E. Mccann and V. I. Fal’ko, “Symmetry of Boundary Conditions of the Dirac Equation for Electrons in Carbon Nanotubes,” Journal of Physics: Condensed Matter, Vol. 16, No. 13, 2004, p. 2371. doi:10.1088/0953-8984/16/13/016
[16] X. Wang, Y. Ouyang, X. Li, et al., “Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors,” Physical Review Letters, Vol. 100, No. 20, 2008, pp. 206803-206807. doi:10.1103/PhysRevLett.100.206803
[17] R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes,” Imperial College Press, London, 1998.
[18] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Physical Review Letters, Vol. 95, No. 22, 2005, pp. 226801-226805. doi:10.1103/PhysRevLett.95.226801
[19] O. Klein, “Die Reflexion von Elektronen an Einem Potentialsprung Nach der Relativistischen Dynamik von Dirac,” Zeitschrift für Physik, Vol. 53, No. 3-4, 1929, pp. 157-165. doi:10.1007/BF01339716
[20] N. Dombey and A. Calogeracos, “Seventy Years of the Klein Paradox,” Physics Reports, Vol. 315, No. 1-3, 1999, pp. 41-58. doi:10.1016/S0370-1573(99, 00023-X
[21] Z. Z. Alisultanov and R. P. Meilanov, “On the Theory of Electronic States of the ‘Epitaxial Graphene-QuantumWell Film’ System,” Physics of Solid State, 2012, Vol. 54, No. 7, pp. 1486-1493. doi:10.1134/S1063783412070037
[22] A. Ignatieve, “Professor of Physics, Chemistry, and Computer Science,” Private Communication, 2012.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.