Share This Article:

Evaluation of the neuropharmacological properties of nerol in mice

Abstract Full-Text HTML XML Download Download as PDF (Size:247KB) PP. 32-38
DOI: 10.4236/wjns.2013.31004    4,911 Downloads   8,058 Views   Citations


The search for therapeutic agents that will provide the ground for man and an improvement in their quality of life is ceaseless. The nerol (cis-2,6-dimethyl-2,6-octadien-8-ol) is a monoterpene which can be found in various medicinal plants as Lippia spp and Melissa officinalis L. The objective of this study was to analyze the acute effect of nerol in the central nervous system (CNS) by performing behavioral tests in mice (open field, elevated plus-maze, light/dark and rota rod tests). We used male albino mice (Mus musculus), Swiss variety, adult with 2 month-old. The animals were divided into five groups (n = 8) for each experimental protocol, and they were administered intraperitoneally (i.p.), respectively, Tween 80 0.05% dissolved in saline solution 0.9%, nerol (30, 60 or 90 mg/kg) or diazepam (2 mg/kg). In the open field test, all groups treated with nerol showed a significant decrease in motor activity (number of crossings, rearings and groomings) when compared with vehicle group. In the elevated plus-maze test, nerol groups significantly increased the number of entries and time of permanence in the open arms when compared with vehicle group. In the light-dark test, nerol groups showed a significant increase the time of permanence in the room clear when compared with vehicle group. In the rota rod test, the groups treated with nerol didn’t show modification in time spent and number of falls in the revolving bar when compared with vehicle group. These results indicate a possible anxiolytic effect of nerol in mice.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Marques, T. , Marques, M. , Lima, D. , Siqueira, H. , Neto, J. , Branco, M. , Souza, A. , Sousa, D. and Freitas, R. (2013) Evaluation of the neuropharmacological properties of nerol in mice. World Journal of Neuroscience, 3, 32-38. doi: 10.4236/wjns.2013.31004.


[1] Bernhoft, A. (2010) Bioactive compounds in plants—Benefits and risks for man and animals. The Norwegian Academy of Science and Letters, Oslo.
[2] Calixto, J.B. (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33, 179-189. doi:10.1590/S0100-879X2000000200004
[3] Patil, B.S., Jayaprakasha, G., Murthy, K.N.C. and Vikram, A. (2009) Bioactive compounds: Historical perspectives, opportunities, and challenges agric. Food Chemistry, 57, 8142-8160. doi:10.1021/jf9000132
[4] Turner, G.W. and Croteau, R. (2004) Organization of Mo- noterpene biosynthesis in mentha. immunocytochemical localizations of geranyl diphosphate synthase, limonene6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiology, 136, 4215-4227. doi:10.1104/pp.104.050229
[5] Costa, J.G.M., Rodrigues, F.F.G., Angélico, E.C., Silva, M.R., Mota, M.L., Santos, N.K.A., Cardoso, A.L.H. and Lemos, T.L.G. (2005) Estudo químico-biologico dos oleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti. Revista Brasileira de Farmacognosia, 15, 304-309. doi:10.1590/S0102-695X2005000400008
[6] Karkabounas, S., Kostoula, O.K., Daskalou, T., Veltsistas, P., Karamouzis, et al. (2006) Anticarcinogenic and antiplatelet effects of carvacrol. Experimental Oncology, 28, 121-125.
[7] Garcia, R., Alves, E.S.S., Santos, M.P., Aquije, G.M.F.V., Fernandes, A.R.R., Santos, R.B., Ventura, J.A. and Fernandes, P.M.B., (2008) Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Brazilian Journal of Microbiology, 39, 163-168. doi:10.1590/S1517-83822008000100032
[8] Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishraa, P.K. and Dubey, N.K. (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology, 48, 1734-1740. doi:10.1016/j.fct.2010.04.001
[9] Consolini, A.E., Berardi, A., Rosella, M.A. and Volonté, M. (2011) Antispasmodic effects of Aloysia polystachya and A. gratissima tinctures and extracts are due to non-competitive inhibition of intestinal contractility induced by acethylcholine and calcium. Revista Brasileira de Farmacognosia, 21, 889-900. doi:10.1590/S0102-695X2011005000137
[10] Rocha, M.L. (2010) Estudo da atividade antinociceptiva e anti-inflamatoria do monoterpeno α,β-epoxi-carvona e seu efeito sobre a neurotransmissao glutamatérgica. Universidade Federal da Paraíba, Joao Pessoa.
[11] Santos, M.R.V., Moreira, F.V., Fraga, B.P., De Sousa, D.P., Bonjardim, L.R. and Quintans-Junior, L.J. (2011) Cardiovascular effects of monoterpenes: A review. Brazilian Journal of Pharmacognosy, 21, 764-771.
[12] Viana, G.S., Vale, T.G., Silva, C.M. and Matos, F.J. (2000) Anticonvulsant activity of essential oils and active principles from chemotypes of Lippia alba (MILL.) NE Brown. Biological and Pharmaceutical Bulletin, 23, 1314-1317. doi:10.1248/bpb.23.1314
[13] Brum, L.F.S., Emanuelli, T., Souza, D.O. and Elisabetsky, E. (2001) Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes. Neurochemical Research, 26, 191-194. doi:10.1023/A:1010904214482
[14] De Sousa, D.P., Goncalves, J.C.R., Quintans-Júnior, L., Cruz, J.S., Araújo, D.A.M. and Almeida, R.N. (2006) Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neuroscience Letters, 401, 231- 235. doi:10.1016/j.neulet.2006.03.030
[15] Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, A. and Bisignano, G. (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49, 2474-2478. doi:10.1128/AAC.49.6.2474-2478.2005
[16] Amaral, J.F., Silva, M.I.G., Neto, M.R.A., Neto, P.F.T., et al. (2007) Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biological and Pharmaceutical Bulletin, 30, 1217-1220. doi:10.1248/bpb.30.1217
[17] Lapczynski, A., Foxenberg, R.J., Bhatia, S.P., Letizia, C.S. and Api, A.M. (2008) Fragrance material review on nerol. Food and Chemical Toxicology, 46, 241-244. doi:10.1016/j.fct.2008.06.062
[18] Kennedy, D.O., Wake, G., Savelev, S., et al. (2003) Modulation of mood and cognitive performance following acute administration of single doses of Melissa officenalis (lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology, 28, 1871-1881. doi:10.1038/sj.npp.1300230
[19] Allahverdiyev, A., Duran, N., Ozguven M. and Koltas, S. (2004) Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 11, 657-661. doi:10.1016/j.phymed.2003.07.014
[20] Topal, U., Sasaki, M., Goto, M. and Otles, S. (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. International Journal of Food Sciences and Nutrition, 59, 619-634. doi:10.1080/09637480701553816
[21] Escobar, P., Leal, S.M., Herrera, L.V., Martinez, J.R. and Stashenko, E. (2010) Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Memorias do Instituto Oswaldo Cruz, 105, 184-190. doi:10.1590/S0074-02762010000200013
[22] Archer, J. (1973) Tests for emotionality in rats and mice: A review. Animal Behavior, 21, 205-235.
[23] Pellow, S., Chopin, P., File S.E. and Briley, M. (1985) Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, 14, 149-167. doi:10.1016/0165-0270(85)90031-7
[24] Lister, R.G. (1987) The use of a plus-maze to measure anxiety in the mouse. Psichopharmacology, 92, 180-185.
[25] Montgomery, K.C. and Monkman, J.A. (1955) The relation between fear and exploratory behavior. Journal of Comparative and Physiological Psychology, 48, 132-136. doi:10.1037/h0048596
[26] Crawley, J.N. and Goodwin, F.K. (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, 13, 167-170. doi:10.1016/0091-3057(80)90067-2
[27] Dunham, N.W. and Miya, T.S. (1957) A note on simple apparatus for detecting neurological deficit in rats and mice. Journal of Pharmaceutical Science, 46, 208-209. doi:10.1002/jps.3030460322
[28] Umezu, T., Sakata, A. and Ito, H. (2001) Ambulation-promoting effect of peppermint oil and identification of its active constituents. Pharmacology Biochemistry Behavior, 69, 383-390. doi:10.1016/S0091-3057(01)00543-3
[29] Farhat, G.N., Affara, N.I. and Gali-Muhtasib, H.U. (2001) Seasonal changes in the composition of the essential oil extract of East Mediterranean sage (Salvia libanotica) and its toxicity in mice. Toxicon, 39, 1601-1605. doi:10.1016/S0041-0101(01)00143-X
[30] Almeida, A.A.C., Costa, J.P., Carvalho, R.B.F., De Sousa, D.P. and Freitas, R.M. (2012) Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Research, 1448, 56-62. doi:10.1016/j.brainres.2012.01.070
[31] Siegel, P.S. (1946) A simple electronic device for the measurement of gross bodily activity of small animals. Journal of Psychology, 21, 227-236. doi:10.1080/00223980.1946.9917283
[32] Fernández, A., álvarez, A., García, D. and Sáenz, T. (2001) Antiinflammatory effect of Pimenta racemosa var. ozua and isolation of the triterpene lupeol. Ⅱ Farmaco, 56, 335-338. doi:10.1016/S0014-827X(01)01080-1
[33] Argal, A. and Pathak, A.K. (2006) CNS activity of Calotropis gigantea roots. Journal of Ethnopharmacology, 106, 142-145. doi:10.1016/j.jep.2005.12.024
[34] Santos, F.A., Rao, V.S.N. and Silveira, E.R., (1996) Studies on the neuropharmacological effects of Psidium guyanensis and Psidium pholianum essential oils. Phytotherapy Research, 10, 655-658. doi:10.1002/(SICI)1099-1573(199612)10:8<655::AID-PTR933>3.0.CO;2-X
[35] Montgomery, K.C. (1955) The relation between fear induced by novel stimulation and exploratory behavior. Journal of comparative and Physiological Psychology, 48, 254-260. doi:10.1037/h0043788
[36] Handley, S.L. and Mithani, S. (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-explomration model of “fear”—motivated behavior. Naunyn-Schmiedeberg’s Archives of Pharmacology, 327, 1-5. doi:10.1007/BF00504983
[37] Lister, R.G. (1990) Ethological-based animal models of anxiety disorders. Pharmacological Therapy, 46, 321-340.
[38] Kharade, S.M., Khetmar, S.S., Desai, P.S., Lokhande, R.S. and Patil, S.S. (2011) Evaluation of anxiolytic activeity of Carum copticum by using elevated plus maze and open field method. International Research Journal of Pharmacy, 2, 165-168. doi:10.1016/0163-7258(90)90021-S
[39] Ajayi, S.A. and Nwoha, P.U. (2011) “The use of elevated plus maze to study the effects of aqueous extract of Garcinia kola (Linn) on the anxiety status of malnourished mice. Eletronic Journal of Biomedicine, 2, 63-67.
[40] Granger, R.E., Campbell, E.L. and Johnston, G.A.R. (2005) (+)- and (-)-borneol: Efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochemical Pharmacology, 69, 1101-1111. doi:10.1016/j.bcp.2005.01.002
[41] Silva, M.I., Silva, M.A., et al. (2009) Effects of isopulegol on pentylenetetrazol-induced convulsions in mice. Fitoterapia, 80, 506-513. doi:10.1016/j.fitote.2009.06.011
[42] De Sousa, D.P., Nobrega, F.F.F., Claudino, F.S., Almeida, R.N., Leite, J.R. and Mattei, R. (2007) Pharmacological effects of the monoterpene α,β-epoxy-carvone in mice. Revista Brasileira de Farmacognosia, 17, 170-175. doi:10.1590/S0102-695X2007000200006
[43] Cross, J.H., Vieira, P., Miranda, H.P., Cerqueira, M., et al. (2007) Latent schistosomiasis in portuguese soldiers, Military medicine, 172, 144-146.
[44] Bourin, M. and Hascoet, M. (2003) The mouse light/dark box test. European Journal of Pharmacology, 463, 55-65. doi:10.1016/S0014-2999(03)01274-3
[45] Flausino, O.A.J., Pereira, A.M., da Silva, V.B. and Nunes-de-Souza, R.L. (2007) Effects of erythrinian alkaloids isolated from Erythrina mulungu (Papilionaceae) in mice submitted to animal models of anxiety. Biological Pharmacological Bulletin, 30, 375-378. doi:10.1248/bpb.30.375
[46] Flausino, O.A.J., Santos, L.A., Verli, H., Pereira, A.M., Bolzani, V.S. and Nunes-De-Souza, R.L. (2007) Anxiolytic effects of erythrinian alkaloids from Erythrina mulungu. Journal of Natural Products, 71, 48-53. doi:10.1021/np060254j
[47] Onusic, G.M., Nogueira, R.L., Pereira, A.M. and Viana, M.B. (2002) Effect of acute treatment with a water-alcohol extract of Erythrina mulungu on anxiety-related responses in rats. Brazilian Journal of Medical and Biological Research, 35, 473-477. doi:10.1590/S0100-879X2002000400011
[48] Onusic, G.M., Nogueira, R.L., Pereira, A.M., Flausino, O.A.J. and Viana, M.B. (2003) Effects of chronic treatment with a water-alcohol extract from Erythrina mulungu on anxiety-related responses in rats. Biological Pharmacological Bulletin, 26, 1538-1542. doi:10.1248/bpb.26.1538
[49] Sen, T. and Chaudhuri, K.N. (1992,) Studies on the neuropharmacological aspects of Pluchea indica root extract. Phytotherapy Research, 6, 175-179. doi:10.1002/ptr.2650060402
[50] Swinyard, E.A. and Kupperberg, H.J. (1985) Antiepileptic drugs: Detection, quantification and evaluation. Federation Proceedings, 44, 2629-2633.
[51] Silva, A.P.S., Cerqueira, G.S., Nunes, L.C.C. and Freitas, R.M. (2012) Effects of an aqueous extract of Orbignya phaletara Mart on locomotor activity and motor coordination in mice and as antioxidant in vitro. Die Pharmazie, 67, 260-263.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.