A Ranking Method of Extreme Efficient DMUs Using Super-Efficiency Model

DOI: 10.4236/jamp.2013.11001   PDF   HTML     4,342 Downloads   12,540 Views   Citations

Abstract

In this paper, we present a method for ranking extreme efficient decision making units (DMUs) in data envelopment analysis (DEA) models based on measuring distance between them and new PPS (after omission extreme efficient DMUs) along the input-axis or output axis.

Share and Cite:

Akbarian, D. (2013) A Ranking Method of Extreme Efficient DMUs Using Super-Efficiency Model. Journal of Applied Mathematics and Physics, 1, 1-4. doi: 10.4236/jamp.2013.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Charnes, W.W. Cooper, E. Rodes, “Measuring the efficiency of decision making units”, European Journal of Operational Research, Vol. 2, No. 6, 1978, pp. 429-444.
[2] R.D. Banker, A. Charnes, W.W. Cooper, “Some models for estimating technical and scale ineffi-ciencies in data envelopment analysis”, Management Science, Vol. 30, No. 9, 1984, pp.1078-1092.
[3] Jin-Xiao Chen, Mingrong Deng, “A cross-dependence based ranking system for efficient and inefficient units in DEA”, Expert Systems with Applica-tions, Vol. 38, 2011, pp. 9648-9655.
[4] G.R. Jahan-shahloo, H.V. Junior, F. Hosseinzadeh Lotfi, & D. Akba-rian, “A new DEA ranking system based on changing the reference set”, European Journal of Operational Re-search, Vol. 18, 2007, pp. 331-337.
[5] S. Li, G.R. Jahanshahloo & M. Khodabakhshi, “A super-efficiency model for ranking efficient units in data envelopment analysis”, Applied Mathematics and Computation, Vol.184, 2007, pp. 638-648.
[6] F. Hosseinzadeh Lotfi, A.A. Noora, G.R. Jahanshahloo, M. Reshadi, “One DEA rankingmethod based on applying aggregate units”, Ex-pert Systems with Applications, Vol. 38, 2011, pp. 13468-13471
[7] S. Mehrabian, M. R. Alirezaee & G.R. Jahanshahloo, “A complete efficiency ranking of deci-sion making units in data envelopment analysis”. Com-putational Optimization and Applications, Vol. 14, 1999, pp. 261-266.
[8] N. Adler, L. Friedman & Z. Sinua-ny-Stern, “Review of ranking methods in the data enve-lopmentanalysis context”, European Journal of Opera-tional Research, Vol. 140, 2000, pp. 249-265.
[9] P. Andersen & N.C. Petersen, “A procedure for ranking efficient units in data envelopment analysis”, Manage-ment Science, Vol. 39, 1993, pp. 1261-1264.
[10] Y.M. Wanga, Y. Luob, L. Liang, “Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis”, Journal of Computational and Applied Mathematics, Vol. 223, 2009, pp. 469-484.
[11] A. Amirteimoori & S. Kordrostami, “Ef-ficient surfaces and an efficiency index in DEA: A con-stant returns to scale”, Applied Mathematics and Com-putation, Vol. 163, 2005, pp. 683-691.
[12] G.R. Jahan-shahloo, F. Hosseinzadeh Lotfi & D. Akbarian, “Finding weak defining hyperplanes of PPS of the CCR model”, submited to journal Applied Mathematical Modelling, Vol. 34, 2010, pp. 3321-3332.
[13] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi & D. Akbarian, ”Finding weak defining hyperplanes of PPS of the BCC model”, Ap-plied Mathematical Modelling, Vol. 34, No.11, 2010, pp. 3321-3332.
[14] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja, G. Tohidi, S. Razavian, “Ranking by sing ??1-norm in data envelopment analysis”, Applied Mathematics and Computation, Vol. 153, 2004, pp. 215-224.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.