Protein Profiles and Dehydrin Accumulation in Some Soybean Varieties (Glycine max L. Merr) in Drought Stress Conditions

Abstract

Drought is one of environmental stresses which the most limiting to plant growth and productivity. Drought stress led to a series of changes including biochemical changes like accumulation of osmolit and specific proteins involved in stress tolerance. One of the proteins that play a role in the mechanism of drought resistance is dehydrin protein. This study aimed to identify the protein profiles and dehydrin accumulation in 7 varieties of local Indonesian soybeans: Tanggamus, Nanti, Seulawah and Tidar (tolerant), Wilis and Burangrang (moderate) and Detam-1 (drought stress sensitive). Plants were treated with drought stress by adjusting soil water content to 25% below field capacity and compared with plants which were grown on normal condition as control plants. The results of SDS-PAGE electrophoresis showed a new protein with the molecular weight of 13 and 52 kDa were induced in Tanggamus, Nanti, Seulawah and Tidar varieties. Western blotting analysis for dehydrin showed that the quantity of the protein in the leaves of all varieties except Tanggamus decreased in drought stress conditions. The quantity of dehydrin protein in tolerant varieties higher than the protein quantity in both moderate varieties and drought sensitive.

Share and Cite:

E. Arumingtyas, E. Savitri and R. Purwoningrahayu, "Protein Profiles and Dehydrin Accumulation in Some Soybean Varieties (Glycine max L. Merr) in Drought Stress Conditions," American Journal of Plant Sciences, Vol. 4 No. 1, 2013, pp. 134-141. doi: 10.4236/ajps.2013.41018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Shinozaki and K. Yamaguchi-Shinozaki, “Gene Networks Involved in Drought Stress Response and Tolerance,” Journal of Experimental Botany, Vol. 58, No. 2, 2007, pp. 221-227. doi:10.1093/jxb/erl164
[2] T. J. Close and P. M. Chandler, “Cereal Dehydrins: Serology, Gene Mapping and Potential Functional Roles,” Australian Journal of Plant Physiology, Vol. 17, No. 3, 1990, pp. 333-344. doi:10.1071/PP9900333
[3] T. J. Close, “Dehydrin: Emergence of a Biochemical Role of a Family of Plant Dehydration Proteins,” Physiology of Plant, Vol. 97, No. 4, 1996, pp. 795-803. doi:10.1111/j.1399-3054.1996.tb00546.x
[4] C. G. Lopez, G. M. Banowetz, C. J. Peterson and W. E. Kronstad, “Differential Accumulation of a 24-kd Dehydrin Protein in Wheat Seedlings Correlates with Drought Stress Tolerance at Grain Filling,” Hereditas, Vol. 135, No. 2-3, 2001, pp. 175-181. doi:10.1111/j.1601-5223.2001.00175.x
[5] F. Volaire, C. Genevieve and L. Francois, “Drought Survival and Dehydration Tolerance in Dactylis glomerata and Poa bulbosa,” Australian Journal of Plant Physiology, Vol. 28, No. 8, 2001, pp. 743-754
[6] Y. Jiang and B. Huang, “Protein Alterations in Response to Water Stress and ABA in Tall fescue,” Crop Science, Vol. 42, No. 1, 2002, pp. 202-207. doi:10.2135/cropsci2002.0202
[7] C. G. Lopez, G. M. Banowetz, C. J. Peterson and W. E. Kronstad, “Wheat Dehydrin Accumulation in Response to Drought Stress during Anthesis,” Plant Signaling and Behaviour, Vol. 29, No. 12, 2002, pp. 1417-1425.
[8] C. R. Allagulova, F. R. Gimalov, F. M. Shakirova and V. A. Vakhitov, “The Plant Dehydrins: Structure and Putative Functions,” Biochemistry (Moscow), Vol. 68, No. 9, 2003, pp. 945-951. doi:10.1023/A:1026077825584
[9] M. Hanin, F. Brini, C. Ebel, Y. Toda, S. Takeda and K. Masmoudi, “Plant Dehydrins and Stress Tolerance: Versatile Proteins for Complex Mechanisms,” Plant Signalling Behaviour, Vol. 6, No. 10, 2011, pp. 1503-1509. doi:10.4161/psb.6.10.17088
[10] L. III Dure, “Structural Motif in Lea Proteins,” In: T. J. Close and E. A. Bray, Eds., Plant Response to Cellular Dehydration during Environmental Stress, Current Topics in Plant Physiology, Vol. 10, American Society of Plant Physiologists, Rockville, 1993, pp. 91-103.
[11] T. J. Close, R. D. Fenton and F. Moonan, “A View of Plant Dehydrins Using Antibodies Specific to the Carboxy Terminal Peptide,” Plant Molecular Biology, Vol. 23, No. 2, 1993, pp. 279-286. doi:10.1007/BF00029004
[12] E. A. Bray, “Plant Responses to Water Deficit,” Trends in Plant Science, Vol. 2, No. 2, 1997, pp. 48-54. doi:10.1016/S1360-1385(97)82562-9
[13] E. G. Beck, S. Fettig, C. Knake, K. Gartig and T. Bhattarai, “Specific and Unspecific Responses of Plant to Cold and Drought Stress,” Journal of Bioscience, Vol. 32, No. 3, 2007, pp. 501-510. doi:10.1007/s12038-007-0049-5
[14] S. A. Blackman, R. L. Obendorf and A. C. Leopold, “Desiccation Tolerancein Developing Soybean Seeds: The Role of Stress Proteins,” Physiologia Plantarum, Vol. 93, No. 4, 1995, pp. 630-638. doi:10.1111/j.1399-3054.1995.tb05110.x
[15] T. J. Close, “Dehydrins: A Commonalty in the Response of Plants to Dehydration and Low Temperature,” Physiologia Plantarum, Vol. 97, No. 4, 1997, pp. 795-803. doi:10.1111/j.1399-3054.1996.tb00546.x
[16] L. III Dure, M. Crouch, J. Harada, T. H. D. Ho, J. Mundy, R. Quatrano, T. Thomas and Z. R. Sung, “Common Amino Acid Sequence Domains among the LEA Proteins of Higher Plants,” Plant Molecular Biology, Vol. 12, No. 5, 1989, pp. 475-486. doi:10.1007/BF00036962
[17] B. Hong, R. Barg and D. H. Ho, “Development and Organ-Specific Expression of an ABA- and Stress-Induced Protein in Barley,” Plant Molecular Biology, Vol. 18, No. 4, 2005, pp. 663-674. doi:10.1007/BF00020009
[18] N. H. Samarah, R. E. Mullen, S. R. Cianzio and P. Scott, “Dehydrin-Like Protein in Soybean Seeds in Response to Drought Stress during Seed Filling,” Crop Science, Vol. 46, No. 5, 2006, pp. 2141-2150. doi:10.2135/cropsci2006.02.0066
[19] K. Demirevska, L. Simova-Stoilova, V. Vassileva, I. Vaseva, B. Grigorova and U. Feller, “Drought Induced Leaf Protein Alterations in Sensitive and Tolerant Wheat Varieties,” General and Applied Plant Physiology Special Issue, Vol. 34, No. 1-2, 2008, pp. 79-102.
[20] E. A. Bray, “Plants Responses to Water Deficit,” Trends in Plant Science, Vol. 2, No. 2, 2000, pp. 48-54. doi:10.1016/S1360-1385(97)82562-9
[21] M. Nylander, J. Svensson, E. T. Palva and B. V. Welin, “Stress Induced Accumulation and Tissue Spesific Localization of Dehydrin in Arabidopsis thaliana,” Plant Molecular Biology, Vol. 45, No. 3, 2001, pp. 263-279. doi:10.1023/A:1006469128280
[22] M. Hara, M. Fujinaga and T. Kuboi, “Radical Scavenging Activity and Oxidative Modification of Citrus Dehydrin,” Plant Physiology and Biochemistry, Vol. 42, No. 7-8, 2004, pp. 657-662. doi:10.1016/j.plaphy.2004.06.004
[23] M. Hara, M. Fujigana and T. Kuboi, “Metal Binding by Citrus Dehydrin with Histidine-Rich Domains,” Journal of Experimental Botany, Vol. 56, No. 420, 2005, pp. 2695-2703. doi:10.1093/jxb/eri262
[24] M. Hara, “The Multifunctionality of Dehydrins. An Overview,” Plant Signaling and Behaviour, Vol. 5, No. 5, 2009, pp. 503-508.
[25] R. Stacy and R. Aalen, “Isolation of Total Protein,” 2003. http//biology.u10.no/molbiol/protocol/protein.htm
[26] S. L. Castle and P. J. Randall, “Effects of Sulfur Deficiency on the Synthesis and Accumulation of Proteins in the Developing Wheat Seed,” Australian Journal of Plant Physiology, Vol. 14, No. 5, 1987, pp. 503-516. doi:10.1071/PP9870503
[27] H. Towbin, T. Staehelin and J. Gordon, “Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications,” Proceeding of the National Academy of Sciences USA, Vol. 76, No. 9, 1979, pp. 4350-4354.
[28] S. Xin, S. Yuan and L. Hong-Hui, “Salicylic Acid Decreases the Levels of Dehydrin-Like Proteins in Tibetan Hulless Barley Leaves under Water Stress,” Verlag der Zeitschrift für Naturforschung, Vol. 61c, No. 3-4, 2006, pp. 245-250.
[29] N. Mohammadkhani and R. Heidari, “Effect of Drought on Soluble Protein in Two Maize Varieties,” Turkish Journal of Biology, No. 32, 2008, pp. 23-30.
[30] P. E. Verslues, M. Agarwal, S. Katiyar-Agarwal, J. Zhu and J. K. Zhu, “Techniques For Molecular Analysis: Methods and Concepts in Quantifying Resistance to Drought, Salt and Freezing, Abiotic Stresses That Affect Plant Water Status,” The Plant Journal, Vol. 45, No. 4, 2006, pp. 523-539. doi:10.1111/j.1365-313X.2005.02593.x
[31] G. M. Pastori and C. H. Foyer, “Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of ‘Redox’ and Abscisic Acid-Mediated,” Plant Physiology, Vol. 129, No. 2, 2002, pp. 460-468. doi:10.1104/pp.011021
[32] E. L. Arumingtyas, W. Widoretno and S. Indriyani, “Somaclonal Variations of Soybeans (Glycine Max. L. Merr) Stimulated by Drought Stress Based on Random Amplified Polymorphic DNAs (RAPDs),” American Journal of Molecular Biology, Vol. 2, No. 1, 2012, pp. 85-91. doi:10.4236/ajmb.2012.21009
[33] Z. N. Ozturk, V. Talame, M. Deyholos, C. B. Michalowski, D. W. Galbraith, N. Gozukirmizi, R. Tuberosa and H. J. Bohnert, “Monitoringl Arge-Scale Changes in Transcript Abundance in Drought-And Salt-Stressed Barley,” Plant Molecular Biology, Vol. 48, No. 5-6, 2002, pp. 551-573. doi:10.1023/A:1014875215580
[34] T. Puhakainen, M. W. Hess, P. M. Kela, J. Svensson, P. Heino and E. T. Palva, “Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing,” Plant Molecular Biology, Vol. 54, No. 5, 2004, pp. 743-753. doi:10.1023/B:PLAN.0000040903.66496.a4
[35] Y. Peng, J. L. Reyes, H. Wei, Y. Yang, D. Karlson, A. A. Covarrubias, S. L. Krebs, A. Fessehaie and R. Arora, “RcDhn5, a Cold Acclimation-Responsive Dehydrin from Rhododendron Catawbiense Rescues Enzyme Activity from Dehydration Effects in Vitro and Enhances Freezing Tolerance in RcDhn5-Overexpressing Arabidopsis Plants,” Physiologia Plantarum, Vol. 134, No. 4, 2008, pp. 583-597. doi:10.1111/j.1399-3054.2008.01164.x
[36] U. K. S. Shekhawat, L. Srinivas and T. R. Ganapathi, “MusaDHN-1, a Novel Multiple Stress-Inducible SK3-Type Dehydrin Gene, Contributes Affirmatively to Drought- and Salt-Stress Tolerance in Banana,” Planta, Vol. 234, No. 5, 2011, pp. 915-932. doi:10.1007/s00425-011-1455-3
[37] A. E. Ochoa-Alfaro, M. Rodríguez-Kessler, M. B. Pérez- Morales, P. Delgado-Sánchez, C. L. Cuevas-Velazquez, G. Gómez-Anduro and J. F. Jiménez-Bremont, “Func- tional Characterization of an Acidic SK3 Dehydrin Iso- lated from an Opuntia streptacantha cDNA Library,” Planta, Vol. 235, No. 3, 2012, pp. 565-557. doi:10.1007/s00425-011-1531-8
[38] K. Dose, “Biochemic,” Springer, Berlin, Heidelberg, New York, 1980. doi:10.1007/978-3-642-96536-4
[39] M. Pierre and A. Savoure, “Effect of Water Stress and SO2 Pollution on Spruce Endopeptides,” Plant Physiology and Biochemistry, Vol. 28, No. 1, 1990, pp. 95-104.
[40] H. Roy-Macauley, Y. Zuily-Fodil, M. Kidric, A. T. Pham Thi and J. Viera da Silva, “Effect of Drought Stress on Proteolytic Activitas in Phaseolus and Vigna Leaves from Sensitive and Resistant Plants,” Physiologia Plantarum, Vol. 85, No. 1, 1992, pp. 90-96. doi:10.1111/j.1399-3054.1992.tb05268.x
[41] G. Singh and V. K. Rai, “Responses of Two Differentially Sensitive Cicer arietinum L. Cultivars to Water Stress Protein Content and Drought Resistance,” Biologia Plantarum, Vol. 24, No. 1, 1982, pp. 7-12. doi:10.1007/BF02898474
[42] R. D. Viestra, “Protein Degradation in Plants,” Annual Review of Plant Physiology and Plant Molecular Biology Vol. 44, 1993, pp. 385- 410. doi:10.1146/annurev.pp.44.060193.002125
[43] B. Hieng, K. Ugrinovich, J. Sustar-Vozlich and M. Kidric, “Different Classes o Proteases are Involved in the Response to Drought of Phaseolus vulgaris L. Cultivars Differing in Sensitivity,” Journal of Plant Physiology, Vol. 161, No. 5, 2004, pp. 519-530. doi:10.1078/0176-1617-00956

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.