Fluoride Processing of Titanium-Containing Minerals


Fluoride processing of natural ilmenite with the use of ammonium hydrogen difluoride (NH4HF2) as an effective fluorinating agent is suggested. Chemistry, composition, structure, thermal and hydrolytic properties of fluorination products were investigated. Ammonium fluoro- and oxofluorotitanates are suitable for preparing of titanium dioxide as pigmentary product or as doped by nitrogen and fluorine.

Share and Cite:

N. Laptash and I. Maslennikova, "Fluoride Processing of Titanium-Containing Minerals," Advances in Materials Physics and Chemistry, Vol. 2 No. 4B, 2012, pp. 21-24. doi: 10.4236/ampc.2012.24B006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] X. Chen, S.S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chem. Rev., vol. 107, pp. 2891–2959, June 2007.
[2] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, “Nano-photocatalytic materials: possibilities and challenges”, Adv. Mater., vol. 24, pp. 229–251, January 2012.
[3] D. Li, H. Haneda, S. Hishita, N. Ohashi, “Visible-light-driven N–F–codoped TiO2 photpcatalyst. 2. Optical chracterization, photocatalysis, and potential application to air purification”, Chem. Mater., vol. 17, pp. 2596–2602, Murch 2005.
[4] S. Livraghi, K. Elghniji, A.M. Czoska, M.C. Paganini, E. Giamello, M. Ksibi, “Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of photoactive species and yheir role in determing the photocatalytic activity under visible light”, J. Photochem Photobiol. A: Chem., vol. 205, pp. 93–97, June 2009.
[5] X. Du, J. He, Y. Zhao, “Facile preparation of F and N codoped pinecone-like titania hollow microparticals with visible light photocatalytic activity”, J. Phys. Chem., vol. 113, pp. 14151–14158, August 2009.
[6] G.S. Wu, J.L. Wen, S. Nigro, A.C. Chen, “One-step synthesis of N- and F-codoped mesoporous TiO2 photocatalyst with high visible light activity”, Nanotechnology, vol. 21, No. 085701, February 2010.
[7] Y. Lv, Z. Fu, B. Yang, J. Xu, M. Wu, C. Zhu, Y. Zhao, “ Preparation N–F-codoped TiO2 nanorod array by liquid phase deposition as visible light photocatalyst”, Mater. Res. Bull., vol. 46, pp. 361–365, March 2011.
[8] W. Wang, C. Lu, Y. Ni, M. Su, W. Huang, Z. Xu, “Preparation and characterization of visible-light-driven N–F–Ta tri-doped TiO2 photocatalyst”, Appl. Surf. Sci., vol. 258, pp. 8696–8703, September 2012.
[9] C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, A.M. Czoska, M.C. Paganini, E. Giamello, “Density functional theory and electron paramagnetic resonance study on the effect of N–F codoping of TiO2”, Chem. Mater., vol. 20, pp. 3706–3714, June 2008.
[10] J. Yu, Y. Chen, A.M. Glushenkov, “Titanium oxide nanorods extracted from ilmenite sands”, Cryst. Growth @ Design, vol. 9, pp. 1240–1244, February 2009.
[11] T. Tao, A.M. Glushenkov, Q. Chen, H. Hu, D. Zhou, H. Zhang, M. Boese, S. Liu, R. Amal,Y. Chen, “Porous TiO2 with a controllable bimodal pore size distribution from natural ilmenite”, Cryst. Eng. Com., vol. 13, pp. 1322–1327, March 2011.
[12] G.L. Herwig, “Upgrading titaniferous ores”, Pat. AU No. 428758, June 1972.
[13] A.R. McGregor, A. Rodionov, “F–treatment of titanium materials”, Pat. AU No. 2005100939, February 2006.
[14] S.S. Svendsen, “Manufacture of titanium compounds”, Pat. US No. 2042434, June1931.
[15] S.S. Svendsen, “Treatment of titanium-bearing materials”, Pat. US No. 2042435, September 1934.
[16] D.M. Chen, Z.Y. Jiang, J.Q. Geng, J.H. Zhu, D. Yang, “A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6”, J. Nanopart. Res., vol. 11, pp. 303–313, February 2009.
[17] M. Hojamberdiev, G.Q. Zhu, P. Sujaridworakun, S. Jinawath, P. Liu, J.P. Zhou, “Visible-light-driven N-F-codoped TiO2 powders from different ammonium oxofluorotitanate precursors”, Powder Technology, vol. 218, pp. 140–148, March 2012.
[18] L. Zhou, D. Smyth-Boyle, P. O’Brien, “A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals”, J. Am. Chem. Soc., vol. 130, pp. 1309–1320, January 2008.
[19] L. Zhou, P. O’Brien, “Ammonium oxofluorotitanate: morphology control and conversion to anatase TiOF2 mesocrystals and their conversion to TiO2”, Phys. Status Solidy A – Appl. Mater Sci., vol. 205, pp. 2317–2323, October 2008.
[20] M-K. Lee, T-H. Shih, “Growth evolution of ammonium oxotrifluorotitanate discoid crystal on glass prepared by ammonium hexafluorotitanate and boric acid”, J. Phys. D: Appl. Phys., vol. 43, No. 025402, January 2010.
[21] K.L. Lv, J.G. Yu, L.Z. Cui, S.L. Chen, M. Li, “Preparation of thermally sdtable antase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity”, J. Alloys Compounds, vol. 509, pp. 4557–4562, March 2011.
[22] L. Chen, L.F. Shen, P. Nie, X.G. Zhang, H.S. Li, “Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battwery”, Electrochim. Acta, vol. 62, pp. 408–415, February 2012.
[23] N.M. Laptash, I.G. Maslennikova, L.N. Kurilenko, N.M. Mishchenko, “Ilmenite fluorination by ammonium hydrodifluoride. New ammonium oxofluorotitanate”, Russ. J. Inorg. Chem., vol. 46, pp. 28–34, January 2001 (Translated from Zh. Neorgan. Khim., vol. 46, pp. 33–39).
[24] B.R. Wani, U.R.K. Rao, K.S. Venkateswarlu, A.S. Gokhale, “Thermal behaviour of (NH4)3VO2F4 and Na(NH4)2VO2F4”, Thermochim. Acta, vol. 58, pp. 87–95, October 1982.
[25] I.G. Maslennikova, N.M. Laptash, T.A. Kaidalova, V.Ya. Kavun, “Volatile ammonium fluorotitanate“, Spectroscopy Letters, vol. 34, pp. 775–781, 2001.
[26] N.M Laptash., I.G. Maslennikova, Т.А. Кaidalova, “Ammonium Oxofluorotitanates”, J. Fluorine Chem., vol. 99, pp. 133–137, November 1999.
[27] A.A. Udovenko, N.M. Laptash, I.G. Maslennikova, “Orientation disorder in ammonium elpasolites. Crystal structures of (NH4)3AlF6, (NH4)3TiOF5 and (NH4)3FeF6“, J. Fluorine Chem., vol. 124, pp. 5–15, November 2003.
[28] A.A. Udovenko, N.M. Laptash, “Dynamic orientational disorder in crystals of fluroelpasolites, structural refinement of (NH4)3AlF6, (NH4)3TiOF5, and Rb2KTiOF5“, Acta Crystallogr., vol. B67, pp. 447–454, December 2011.
[29] I.N. Flerov, V.D. Fokina, A.F. Bovina, N.M. Laptash, “Phase transitions in perovskite-like oxyfluorides (NH4)3WO3F3 and (NH4)3TiOF5“, Solid State Sci., vol. 6, pp. 367–370, April 2004.
[30] N.M. Laptash, E.B. Merkulov, I.G. Maslennikova, “Thermal behaviour of ammonium oxofluorotitanates (IV)“, J. Therm. Anal. Calorym., vol. 63, pp. 197–204, 2001.
[31] N.M. Laptash, M.A. Fedotov, I.G. Maslennikova, “Hydrolysis of volatile ammonium oxofluorotitanate (IV) according to 19F, 17O, 49Ti. NMR data“, Russ. J. Struct. Chem., vol. 45, pp. 74–82, January-February 2004 (Translated from Zh. Strukt. Khim., vol. 45, pp. 77–85).
[32] I.G. Maslennikova, N.M. Laptash, A.P. Golikov, “Kinetics of pyrohydrolysis of (NH4)2TiF6 и (NH4)2TiOF4“, Russ. J. Inorg. Chem., vol. 46, pp. 186–191, February 2001 (Translated from Zh. Neorgan. Khim., vol. 46, pp. 233–238).
[33] I.G. Maslennikova, N.M. Laptash, A.P. Golikov, “Pyrohydrolysis of ammonium fluoroferrates“, Russ. J. Inorg. Chem., vol. 47, pp. 705–711, May 2002 (Translated from Zh. Neorgan. Khim., vol. 47, pp. 796-802).
[34] P.S. Gordienko, I.G. Maslennikova, N.M. Laptash, V.K. Gonchruk, A.A. Smol’kov, “Method of titanium-containing raw material processing”, Pat. RU No. 2139249, October 1999.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.