Age and depot-specific adipokine responses to obesity in mice

Abstract

Leptin and adiponectin are the most abundant adipokines that regulate energy homeostasis. Here, we report the changes of leptin and adiponectin in response to age and their depot-specific expression in lean and genetically obese mice. Fat deposition patterns, adipokine levels and their adipose-tissue depot-specific expression patterns were examined in both sexes of lean and obese mice on two different diets at four and 20 weeks. In obese mice, body fat mass was higher than in lean mice and was increased with age. Leptin levels correlated with body fat mass and therefore increased with age. Leptin levels were correlated higher with the weight of subcutaneous than with the weight of reproductive adipose tissue. Likewise, leptin mRNA levels in subcutaneous adipose tissue corresponded well with serum leptin levels. Adiponectin levels did not differ significantly between the ages and did not correlate with body fat mass or with either of the adipose-tissue depots, although obese mice had lower adiponectin levels than lean mice. Nevertheless, serum adiponectin levels showed a pattern of changes that was similar to that of the adiponectin transcript amounts in the reproductive adipose tissue. Our results confirm that serum leptin levels are regulated by the body fat mass, predominantly by the subcutaneous adipose tissue mass. Furthermore, our data provide evidence that serum adiponectin levels are influenced by other factors than body fat mass alone.

Share and Cite:

Hantschel, C. , Wagener, A. , Neuschl, C. , Schmitt, A. and Brockmann, G. (2012) Age and depot-specific adipokine responses to obesity in mice. Health, 4, 1522-1529. doi: 10.4236/health.2012.412A218.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tilg, H. and Moschen, A.R. (2006) Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, 6, 772-783. doi:10.1038/nri1937
[2] Flier, J.S. (1998) Clinical review 94: What’s in a name? In search of leptin’s physiologic role. Journal of Clinical Endocrinology & Metabolism, 83, 1407-1413. doi:10.1210/jc.83.5.1407
[3] Friedman, J.M. and Halaas, J.L. (1998) Leptin and the regulation of body weight in mammals. Nature, 395, 763-770. doi:10.1038/27376
[4] Minokoshi, Y., Kim, Y.B., Peroni, O.D., Fryer, L.G., Muller, C., Carling, D. and Kahn, B.B. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activ- ated protein kinase. Nature, 415, 339-343. doi:10.1038/415339a
[5] Lee, Y.H., Magkos, F., Mantzoros, C.S. and Kang, E.S. (2011) Effects of leptin and adiponectin on pancreatic beta-cell function. Metabolism, 60, 1664-1672. doi:10.1016/j.metabol.2011.04.008
[6] Basu, S., Laffineuse, L., Presley, L., Minium, J., Catalano, P.M. and Hauguel-de Mouzon, S. (2009) In utero gender dimorphism of adiponectin reflects insulin sensitivity and adiposity of the fetus. Obesity (Silver Spring), 17, 1144- 1149.
[7] Kadowaki, T. and Ya-mauchi, T. (2005) Adiponectin and adiponectin receptors. En-docrine Reviews, 26, 439-451. doi:10.1210/er.2005-0005
[8] Yamauchi, T., Kamon, J., Mi-nokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8, 1288-1295. doi:10.1038/nm788
[9] Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K. and Tobe, K. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation, 116, 1784- 1792. doi:10.1172/JCI29126
[10] Frederich, R.C., Ha-mann, A., Anderson, S., Lollmann, B., Lowell, B.B. and Flier, J.S. (1995) Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nature Medicine, 1, 1311-1314. doi:10.1038/nm1295-1311
[11] Caprio, S., Tamborlane, W.V., Silver, D., Robinson, C., Leibel, R., McCarthy, S., Grozman, A., Belous, A., Maggs, D. and Sherwin, R.S. (1996) Hyperleptine-mia: An early sign of juvenile obesity. Relations to body fat depots and insulin concentrations. American Journal of Physiology, 271, E626-E630.
[12] Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Oh-moto, Y., Funahashi, T. and Matsuzawa, Y. (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications, 257, 79-83. doi:10.1006/bbrc.1999.0255
[13] Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R.E. and Tataranni, P.A. (2001) Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. Journal of Clinical Endocrinology & Me-tabolism, 86, 1930-1935. doi:10.1210/jc.86.5.1930
[14] Diamond Jr., F.B., Cuthbertson, D., Hanna, S. and Eichler, D. (2004) Correlates of adiponectin and the leptin/adi- ponectin ratio in obese and non-obese children. Journal of Pediatric Endocrinology & Metabolism, 17, 1069- 1075.
[15] Gil-Campos, M., Canete, R. and Gil, A. (2004) Hormones regulating lipid metabolism and plasma lipids in child- hood obesity. International Journal of Obesity and Related Metabolic Disorders, 28, S75-S80. doi:10.1038/sj.ijo.0802806
[16] Einstein, F.H., Atzmon, G., Yang, X.-M., Ma, X.-H., Rincon, M., Rudin, E., Muzumdar, R. and Barzilai, N. (2005) Differential responses of visceral and subcutaneous fat depots to nutrients. Diabetes, 54, 672-678. doi:10.2337/diabetes.54.3.672
[17] Barsh, G.S., Farooqi, I.S. and O’Rahilly, S. (2000) Genetics of body-weight regulation. Nature, 404, 644-651.
[18] Rankinen, T., Zuberi, A., Chagnon, Y.C., Weisnagel, S.J., Argyropoulos, G., Walts, B., Perusse, L. and Bouchard, C. (2006) The human obesity gene map: The 2005 update. Obesity (Silver Spring), 14, 529-644. doi:10.1038/oby.2006.71
[19] Meyer, C.W., Wagener, A., Rink, N., Hantschel, C., Heldmaier, G., Klingenspor, M. and Brock-mann, G.A. (2009) High energy digestion efficiency and altered lipid metabolism contribute to obesity in BFMI mice. Obesity (Silver Spring), 17, 1988-1993. doi:10.1038/oby.2009.124
[20] Neuschl, C., Hantschel, C., Wagener, A., Schmitt, A.O., Illig, T. and Brockmann, G.A. (2010) A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse. International Journal of Obesity, 34, 1706-1714. doi:10.1038/ijo.2010.97
[21] Wagener, A., Schmitt, A.O., Aksu, S., Schlote, W., Neuschl, C. and Brockmann, G.A. (2006) Genetic, sex, and diet effects on body weight and obesity in the Berlin Fat Mouse Inbred lines. Physiological Genomics, 27, 264-270. doi:10.1152/physiolgenomics.00225.2005
[22] Tinsley, F.C., Taicher, G.Z. and Heiman, M.L. (2004) Evaluation of a quanti-tative magnetic resonance method for mouse whole body com-position analysis. Obesity Research, 12, 150-160. doi:10.1038/oby.2004.20
[23] R Development Core Team (2011) R: A Language and Environment for Statistical Com-puting. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
[24] Combs, T.P., Berg, A.H., Rajala, M.W., Klebanov, S., Iyengar, P., Jimenez-Chillaron, J.C., Patti, M.E., Klein, S.L., Weinstein, R.S. and Scherer, P.E. (2003) Sexual dif- ferentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes, 52, 268-276. doi:10.2337/diabetes.52.2.268
[25] Pajvani, U.B., Du, X., Combs, T.P., Berg, A.H., Rajala, M.W., Schulthess, T., Engel, J., Brownlee, M. and Scherer, P.E. (2003) Structure-function stud-ies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. Journal of Biological Chemistry, 278, 9073-9085. doi:10.1074/jbc.M207198200
[26] Ribot, J., Rodriguez, A.M., Rodriguez, E. and Palou, A. (2008) Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity (Silver Spring), 16, 723-730. doi:10.1038/oby.2008.113
[27] Wagener, A., Goessling, H.F., Schmitt, A.O., Mauel, S., Gruber, A.D., Reinhardt, R. and Brockmann, G.A. (2010) Genetic and diet effects on Ppar-? and Ppar-? signaling pathways in the Berlin Fat Mouse Inbred line with genetic predisposition for obesity. Lipids in Health and Disease, 9, 99. doi:10.1186/1476-511X-9-99
[28] Montague, C.T., Prins, J.B., Sanders, L., Digby, J.E. and O’Rahilly, S. (1997) Depot- and sex-specific differences in human leptin mRNA expression: Implications for the control of regional fat distribution. Diabetes, 46, 342-347. doi:10.2337/diabetes.46.3.342
[29] Hube, F., Lietz, U., Igel, M., Jensen, P.B., Tornqvist, H., Joost, H.G. and Hauner, H. (1996) Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Hormone and Metabolic Research, 28, 690-693. doi:10.1055/s-2007-979879
[30] Bullen Jr., J.W., Bluher, S., Kelesidis, T. and Mantzoros, C.S. (2007) Regulation of adi-ponectin and its receptors in response to development of diet-induced obesity in mice. American Journal of Physiology—Endocrinology and Metabolism, 292, E1079-E1086. doi:10.1152/ajpendo.00245.2006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.