Share This Article:

The Efficiency of a p-n Solar Diode as a Function of the Recombination Velocity within the Depletion Layer

Full-Text HTML Download Download as PDF (Size:186KB) PP. 326-331
DOI: 10.4236/opj.2012.24040    2,566 Downloads   4,328 Views   Citations

ABSTRACT

The role of the carrier’s recombination velocity Si within the depletion Layer of p-n junction solar cell and the external bias voltage Va across the junction in determining the current density “J” through the cell is revealed. The unsteady carrier diffusion equation is solved under illumination conditions considering a source spectral function G(λ). The efficiency of the device as a function of Si , Va , G(λ) is obtained. Computations considering a silicon solar cell are given as an illustrative example.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. El-Adawi and N. Al-Shameri, "The Efficiency of a p-n Solar Diode as a Function of the Recombination Velocity within the Depletion Layer," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 326-331. doi: 10.4236/opj.2012.24040.

References

[1] A. S. Bouazzi, M. Abaab and B. Rezig, “A New Model of Very High Efficiency Buried Emitter Silicon Solar Cell,” Solar Energy Materials & Solar Cells, Vol. 46, No. 1, 1997, pp. 29-41.
[2] O. Kurniawan and K. S. Vincent, “An Analysis of the Factors Affecting the Alpha Parameter Used for Extracting Surface Recombination Velocity in EBIC Measurements,” Solid State Electronics, Vol. 50, No. 3, 2006, pp. 345-354. doi:10.1016/j.sse.2006.01.006
[3] C. L. Garrido, D. Stolik, J. Rodriguez and A. Morales, “Influence of Carrier Recombination in the Space Charge Region on Minority Carrier Life Time in the Base Region of Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 57, No. 3, 1999, pp. 239-247. doi:10.1016/S0927-0248(98)00174-3
[4] K. Chakabarty and S. Nsingh, “Depletion Layer Resistence and Its Effect on I-V Characteristics of Fully-andPartially Illuminated Silicon Solar Cells,” Solid state electronics, Vol. 39, No. 4, 1966, pp. 577-581. doi:10.1016/0038-1101(96)00179-7
[5] A. B. Kaiser, “Electronic Transport Properties of Conducting Polymers and Carbon Nanotubes,” Progress in Physics, 64, No. 1, 2001, pp. 1-49. doi:10.1088/0034-4885/64/1/201
[6] A Cuevas, P. A. Basore, M. C. Girouit and C. Dubois, “Surface Recombination Velocity of Highly Doped n-Type Silicon,” Journal of Applied Physics, Vol. 80, No. 6, 1966, p. 3370. doi:10.1063/1.363250
[7] P. Kittidachachan, T. markvart, D. M. Bagnall, R. Greef, and G. J. Ensell, “A Detailed Study of p-n Junction Solar Cells by Means of Collection Efficiency,” Solar Energy Materials and Solar Cells, Vol. 91, No. 2-3, 2007, pp. 160-166. doi:10.1016/j.solmat.2006.08.002
[8] S. Daliento, L. Mele, E. Bobeico, L. Lancellotti and P. Morrillo, “Analytical Modeling and Minority Current Measurements for the Determination of the Emitter Surface Recombination Velocity in Silicon Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 91, No. 8, 2007, pp. 707-713. doi:10.1016/j.solmat.2006.12.007
[9] F. A. Lindholm, L. Juinj and A. N. Schel, “Determination of Life Time And Surface Recombination Velocity of p n-Junction Solar Cells And Diodes by Observing Transients,” IEEE Transactions on Electron Devices, Vol. 34, No. 2, 1987, pp. 277-285.
[10] S. N. Singh and P. K. Singh, “Modeling of Minority-Carrier Surface Recombination Velocity at Low-High Junction of an P-N Silicon Diode,” IEEE Transaction on Electron Devices, Vol. 38, No. 2, 1991, pp. 337-343. doi:10.1109/16.69915
[11] S. S. de, A. K. Ghosh, M. Bera, A. Hajra and J. C. Halder, “Influence of Built-in-Potential on the Effective Surface Recombination Velocity for Heavily Doped High-Low Junction,” Physics B: Physics of Condensed Matter, Vol. 228, No. 3-4, 1966 , pp. 363-368.
[12] S. Kumar, P. K. Singh, G. S. Chilana and S. R. Dhariwal, “Generation and Recombination Life Time Measurement in Silicon Wafers Using Impedance Spectroscopy,” Semiconductor Science and Technology, Vol. 24, No. 9, 2009, pp. 1-8, Article ID: 095001.
[13] J. F. Gibbons, “Semiconductor Electronics,” McGrawHill, New York, 1966, Chapter 6.
[14] M. Saad and A. Kassis, “Effect of Interface Recombination on Solar Cell Parameters,” Solar Energy Materials & Solar Cells, Vol. 79, No. 4, 2003, pp. 507-517. doi:10.1016/S0927-0248(03)00101-6
[15] M. K. EL-Adawi and N. S. AL-Shameri, “On the Depletion Layer,” Material Science Research India, Vol. 6, No. 1, 2009, pp. 73-78.
[16] H. Awaki, K. Tachibana, Y. Tamai, K. Yamamoto, S. Kitamoto and M. Tsujimoto, “A Novel Method to Estimate the Thickness of the Depletion Layer of an X-Ray CCD,” Nuclear Instruments & Methods in Physics Research (Section A), Vol. 495, 2002, pp. 232-239.
[17] M. K. EL-Adawi and N. S. AL-Shameri, “The Efficiency of the Solar Converter as a Function of the Doping Degrees and the Incident Solar Spectral Photon Flux,” Canadian Journal on Scientific and Industrial Research, Vol. 3, No. 3, 2012, pp. 112-122.
[18] S. M. Sze, “Physics of Semiconductor Devices,” Wiley, New York, 1981.
[19] M. A. Green, “Solar Cells,” Prentice-Hall, Englewood Cliffs, 1982.
[20] R. F. Pierret, “Semiconductor Devices Fundamentals,” Addison-Wesley Publishing Company, Boston, 1996.
[21] A. Bhattacharyya and B. G. Streetman, “Dynamics of Pulsed CO2 Laser Annealing of Silicon,” Journal of Applied Physics, Vol. 14, No. 5, 1981, pp. 67-72.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.