Share This Article:

ThO2 and (U,Th)O2 processing—A review

Full-Text HTML XML Download Download as PDF (Size:176KB) PP. 943-949
DOI: 10.4236/ns.2012.431123    3,728 Downloads   7,049 Views   Citations

ABSTRACT

India is one of the few countries committed to expansion of nuclear power. In view of the abundance of thorium relative to uranium, thorium cycle is under serious development and implementation. Both ThO2 and (U,Th)O2 are used. Fine powders of the same are mostly prepared through the aqueous chemical route, pressed and sintered. Extrusion and hot impact densification are also being used. Sol-gel method and other alternatives are also being pursued with the advantage of automation and remote operation. Relevant papers on the thorium cycle with emphasis on processing methods and related aspects are reviewed here.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Balakrishna, P. (2012) ThO2 and (U,Th)O2 processing—A review. Natural Science, 4, 943-949. doi: 10.4236/ns.2012.431123.

References

[1] Sebastian, D.E., Coates, D.J. and Parks, G.T. (2012) A novel method for rapid comparative quantitative analysis of nuclear fuel cycles. Annals of Nuclear Energy, 42, 80-88. doi:10.1016/j.anucene.2011.12.013
[2] Romney, B.D. and Bhaskar, S. (2011) Towards a sustainable future using pressure tube reactor technology. Energy Procedia, 7, 286-292. doi:10.1016/j.egypro.2011.06.037
[3] IAEA (2012) Role of thorium to supplement fuel cycles of future nuclear energy systems. IAEA, Vienna.
[4] IAEA (2005) Thorium fuel cycle—Potential benefits and challenges. IAEA, Vienna.
[5] IAEA (2002) Thorium fuel utilization: Options and trends. IAEA-TECDOC-1319. IAEA, Vienna.
[6] IAEA (2000) Thorium based fuel options for the generation of electricity: Developments in the 1990s. IAEA- TECDOC-1155. IAEA, Vienna.
[7] IAEA (1987) Utilization of thorium-based nuclear fuel: Current status and perspectives (Proc. TCM, Vienna). IAEA- TECDOC-412, IAEA, Vienna.
[8] IAEA (1979) Status and prospects of thermal breeders and their effect on fuel utilization. Technical Reports Series No. 195, IAEA, Vienna.
[9] IAEA (1966) Utilization of thorium in power reactors. Technical Reports Series No. 52, IAEA, Vienna.
[10] Csom, Gy., Reiss, T., Fehér, S. and Czifrus Sz. (2012) Thorium. Annals of Nuclear Energy, 41, 67-78.
[11] Nuttin, A., Guillemin, P., Bidaud, A., Capellan, N., Chambon, R., David, S., Méplan, O. and Wilson, J.N. (2012) Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors. Annals of Nuclear Energy, 40, 171-189. doi:10.1016/j.anucene.2011.08.014
[12] Okawa, T., Nakayama, S. and Sekimoto, H. (2012) Design study on power flattening to sodium cooled largescale CANDLE burning core with using thorium fuel. Energy Conversion and Management, 53, 182-188. doi:10.1016/j.enconman.2011.06.006
[13] Banerjee, S. and Govindan Kutty, T.R. (2012) Functional Materials. Nuclear Fuels, 10, 387-466.
[14] Breza, J., Da?ílek, P. and Ne?as, V. (2010) Study of thorium advanced fuel cycle utilization in light water reactor VVER-440. Annals of Nuclear Energy, 37, 685-690. doi:10.1016/j.anucene.2010.02.003
[15] Yu, J.Y., Wang, K., You, S.B., Jia, B.S., Shen, S.F., Shi, G., Sollychin, R. and Ruan, Y.Q. (2004) Thorium fuel cycle of a thorium-based advanced nuclear energy system. Progress in Nuclear Energy, 45, 71-83. doi:10.1016/j.pnueene.2004.07.004
[16] Rodriguez, P. and Sundaram, C.V. (1981) Nuclear and materials aspects of the thorium fuel cycle. Journal of Nuclear Materials, 100, 227-249. doi:10.1016/0022-3115(81)90534-1
[17] Balakrishnan, K., Majumdar, S., Ramanujam, A. and Kakodkar, A. (2002) The Indian perspective on thorium fuel cycles. Thorium Fuel Cycle: Options and Trends, IAEA TECDOC-1319, 257-265.
[18] Anantharaman, K., Shivakumar, V. and Saha, D. (2008) Utilisation of thorium in reactors. Journal of Nuclear Materials, 383, 119-121. doi:10.1016/j.jnucmat.2008.08.042
[19] Shuller, L.C., Ewing, R.C. and Becker, U. (2011) Thermodynamic properties of ThxU1?xO2 (0 < x < 1) based on quantum-mechanical calculations and Monte-Carlo simulations. Journal of Nuclear Materials, 412, 13-21.
[20] Ananatharaman, V., Shivakumar, V. and Saha, D. (2008) Utilization of thorium in reactors. Journal of Nuclear Materials, 383, 119-121.
[21] Banerjee, J., Kutty, T.R.G., Kumar, A., Kamath, H.S. and Banerjee, S. (2011) Densification behavior and sintering kinetics of ThO2-4%UO2 pellet. Journal of Nuclear Materials, 408, 224-230. doi:10.1016/j.jnucmat.2010.11.029
[22] Johnson, J.R. and Curtis, C.E. (1954) Note on sintering of thoria. Journal of the American Ceramic Society, 37, 611. doi:10.1111/j.1151-2916.1954.tb13996.x
[23] Harada, Y., Baskin, Y. and Handwerk, J.H. (1962) Calcination and sintering study of thoria. American Ceramic Society, 45, 253-257. doi:10.1111/j.1151-2916.1962.tb11139.x
[24] Pope, J.M. and Radford, K.C. (1974) Physical properties of some thoria powders and their influence on sinterability. Journal of Nuclear Materials, 52, 241-254 doi:10.1016/0022-3115(74)90171-8
[25] Shiratori, T. and Fukuda, K. (1993) Fabrication of very high density fuel pellets of thorium dioxide. Journal of Nuclear Materials, 202, 98-103 doi:10.1016/0022-3115(93)90033-U
[26] Balakrishna, P. (1994) Characterization and sintering of thorium dioxide. Ph.D. Dissertation, Indian Institute of Technology, Bombay.
[27] White, G.D., Bray, L.A. and Hart, P.E. (1981) Optimization of thorium oxalate precipitation conditions relative to derived oxide sinterability. Journal of Nuclear Materials, 96, 305-313. doi:10.1016/0022-3115(81)90574-2
[28] Altas, Y., Eral, M. and Tel, H. (1997) Preparation of homogeneous (Th0.8U0.2)O2 pellets via coprecipitation of (Th,U)(C2O4)2?nH2O powders. Journal of Nuclear Materials, 249, 46-51. doi:10.1016/S0022-3115(97)00185-2
[29] Dash, S., Singh, A., Ajikumar, P.K., Subramaniam, H., Rajalakshmi, M., Tyagi, A.K., Arora, A.K., Narasimhan, S.V. and Raj, B. (2002) Synthesis and characterization of nanocrystalline thoria obtained from thermally decomposed thorium carbonate. Journal of Nuclear Materials, 303, 156-168. doi:10.1016/S0022-3115(02)00816-4
[30] Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., Divakar, R. and Sudararaman, R. (1996) PVA aided microwave synthesis: A novel route for the production of nanocrystalline thoria powder. Journal of Nuclear Materials, 231, 213-220. doi:10.1016/0022-3115(96)00368-6
[31] Purohit, R.D., Saha, S. and Tyagi, A.K. (2001) Nanocrystalline thoria powders via glycine-nitrate combination. Journal of Nuclear Materials, 288, 7-10. doi:10.1016/S0022-3115(00)00717-0
[32] Kutty, T.R.G., Khan, K.B., Hegde, P.V., Banerjee, J., Sengupta, A.K., Majumdar, S. and Kamath, H.S. (2004) Development of a master sintering curve for ThO2. Journal of Nuclear Materials, 327, 211-219. doi:10.1016/j.jnucmat.2004.02.007
[33] Hingant, N., Clavier, N., Dacheux, N., Barre, N., Hubert, S., Obbade, S., Taborda, F. and Abraham, F. (2009) Preparation, sintering and leaching of optimized uranium thorium dioxides. Journal of Nuclear Materials, 385, 400-406. doi:10.1016/j.jnucmat.2008.12.011
[34] Hingant, N., Clavier, N., Dacheux, N., Hubert, S., Barré, N., Podor, R. and Aranda, L. (2011) Preparation of morphology controlled Th(1?x)UxO2 sintered pellets from low-temperature precursors. Powder Technology, 208, 454- 460. doi:10.1016/j.powtec.2010.08.042
[35] Joseph, K., Sridharan, R. and Gnanasekaran, T. (2000) Kinetics of thermal decomposition of Th(C2O4)2?6H2O. Journal of Nuclear Materials, 281, 129-139. doi:10.1016/S0022-3115(00)00241-5
[36] Belle, J. and Berman, R.M. (1981) Thorium dioxide— Properties and nuclear applications. Technical Report, DOE/ NE-0060.
[37] MacDonald, P.E. (2002) Advanced proliferation resistant, lower cost, uranium—Thorium dioxide fuels for light water reactors. Idaho National Engineering and Environmental Laboratory INEEL/EXT-02-01411.
[38] Shiratori, T. and Fukuda, K. (1993) Fabrication of very high density fuel pellets of thorium dioxide. Journal of Nuclear Materials, 202, 98-103. doi:10.1016/0022-3115(93)90033-U
[39] Matzke, H. (1966) Diffusion in doped UO2. Nuclear Applications, 2, 131.
[40] Matzke, H. (1967) Xenon migration and trapping in doped ThO2. Journal of Nuclear Materials, 21, 190-198. doi:10.1016/0022-3115(67)90149-3
[41] Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R. and Ramakrishnan, P. (1988) Thorium oxide: Calcination, compaction and sintering. Journal of Nuclear Materials, 160, 88-94. doi:10.1016/0022-3115(88)90012-8
[42] Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R. and Ramakrishnan, P. (1988) Low temperature sintering of thoria. Journal of Materials Science Letters, 7, 657-660. doi:10.1007/BF01730326
[43] Ananthasivan, K., Anthonysamy, S., Sudha, C., Terrance, A.L.E. and Vasudeva Rao, P.R. (2002) Thoria doped with cations of Group VB—Synthesis and sintering. Journal of Nuclear Materials, 300, 217-229. doi:10.1016/S0022-3115(01)00736-X
[44] Weinreich, A.W., Britton, W.H., Hutchison, C.R., Johnson, R.G.R. and Burke, T.J. (1977) Fabrication of high density, high integrity thorium based fuel pellets. Transactions of the American Nuclear Society, 27, 305-307.
[45] Wymer, R.G. 1974) In: Proceedings of the Panel Discussion on Sol Gel Processes for Fuel Fabrication, IAEA, 161, 129.
[46] Onofrei, M. (1986) Sol gel extrusion process for fabrication of (Th,U)O2 recycle fuel. Journal of Nuclear Materials, 137, 207-211. doi:10.1016/0022-3115(86)90221-7
[47] Grosse, K.-H., Hrovat, M. and Seemann, R. (2009) Manufacturing technology for thorium based fuel elements. CQCNF 2009, Hyderabad.
[48] Egeland, G.W., Zuck, L.D., Cannon, W.R, Lessing, P.A. and Medvedev, P.G. (2010) Dry bag isostatic pressing for improved green strength of surrogate nuclear fuel pellet. Journal of Nuclear Materials, 406, 205-211. doi:10.1016/j.jnucmat.2010.08.022
[49] Yamagishi, S. and Takahashi, Y. (1995) High density (Th,U)O2 pellet preparation by sol gel microsphere pelletization and diluted hydrogen sintering. Journal of Nuclear Materials, 227, 144-149. doi:10.1016/0022-3115(95)00125-5
[50] Matthews, R.B. and Hart, P.E. (1980) Nuclear fuel pellets fabricated from gel-derived microspheres. Journal of Nuclear Materials, 92, 207-216. doi:10.1016/0022-3115(80)90104-X
[51] Kutty, T.R.G., Khan, K.B., Somayajulu, P.S., Sengupta, A.K., Panakkal, T.P., Kumar, A. and Kamath H.S. (2008) Development of CAP process for fabrication of ThO2- UO2 fuels Part 1: Fabrication and densification behavior. Journal of Nuclear Materials, 373, 299-308. doi:10.1016/j.jnucmat.2007.06.010
[52] Kutty, T.R.G., Kulkarni, R.V., Sengupta, A.K., Panakkal, T.P., Kumar, A. and Kamath, H.S. (2008) Development of CAP process for fabrication of ThO2-UO2 fuels Part II: Characterization and property evaluation. Journal of Nuclear Materials, 373, 309-318. doi:10.1016/j.jnucmat.2007.06.011
[53] Kutty, T.R.G., Somayajulu, P.S., Khan, K.B., Kumar, A. and Kamath, H.S. (2009) Characterization of (Th,U)O2 pellets made by advanced CAP process. Journal of Nuclear Materials, 384, 303-310. doi:10.1016/j.jnucmat.2008.12.038
[54] Kutty, T.R.G., Khan, K.B., Achutan, P.V., Dhami, P.S., Dakshinamoorthy, A., Somayajulu, P.S., Panakkal, T.P., Kumar, A. and Kamath, H.S. (2009) Characterization of ThO2-UO2 pellets made by co-precipitation process. Journal of Nuclear Materials, 389, 351-358. doi:10.1016/j.jnucmat.2008.12.334
[55] Khot, P.M., Nehete, Y.G., Fulzele, A.K., Baghra, C., Mishra, A.K., Afzal, M., Panakkal, T.P. and Kamath, H.S. (2012) Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O2 mixed oxide pellets. Journal of Nuclear Materials, 420, 1-8. doi:10.1016/j.jnucmat.2011.09.006
[56] Kutty, T.R.G., Nair, M.R., Sengupta, P., Basak, U., Kumar, A. and Kamath H.S. (2008) Characterization of (Th,U)O2 fuel pellets made by impregnation technique. Journal of Nuclear Materials, 374, 9-19. doi:10.1016/j.jnucmat.2007.07.004
[57] Glodeanu, F. (1984) Fabrication of high density thoria urania fuel pellets. Journal of Nuclear Materials, 126, 181- 183. doi:10.1016/0022-3115(84)90089-8
[58] Ananthasivan, K., Anthonysamy, S., Singh, A., Vasudeva Rao, P.R. (2002) De-agglomeration of thorium oxalate— A method for the synthesis of sinter active thoria. Journal of Nuclear Materials, 306, 1-9. doi:10.1016/S0022-3115(02)01229-1
[59] Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., Divakar, R. and Sundararaman, D. (1998) Microwave synthesis of solid solutions of urania and thoria—A comparative study. Journal of Nuclear Materials, 254, 55-64. doi:10.1016/S0022-3115(97)00281-X
[60] Anthonysamy, S., Ananthasivan, K., Chandramouli, V., Kaliappan, I. and Vasudeva Rao, P.R. (2000) Combustion synthesis of urania thoria solid solutions. Journal of Nuclear Materials, 278, 346-357. doi:10.1016/S0022-3115(99)00267-6
[61] Balakrishna, P., Nandi, D., Narayanan, P.S.A. and Somayajulu, G.V.S.R.K. (1986) Investigation of alternative routes for producing UO2-Gd2O3 mixed oxide for nuclear fuel applications. In: Ramanujam, M., Ed., Advances In Particulate Technology, IIT, Madras, 719-731.
[62] Balakrishna, P., Kulkarni, A.P., Somayajulu, G.V.S.R.K., Swaminathan, N. and Balaramamoorthy, K. (1991) Sintering of UO2-Gd2O3. In: Vincenzini, P., Ed., Ceramics Today—Tomorrow’s Ceramics—Materials Science Monograph 66D, Elsevier, Amsterdam, 3003-3016.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.