Behavioral inhibition in female college students with schizotypal traits: An event-related potential study

DOI: 10.4236/ojpsych.2012.224051   PDF   HTML     3,563 Downloads   5,636 Views  

Abstract

This study investigated behavioral inhibition in female college students with psychometrically defined schizotypal traits using a Go/NoGo task and event-related potentials (ERPs). The schizotypal-trait (n = 15) and normal control (n = 15) groups were selected based on scores of the Schizotypal Personality Questionnaire (SPQ). The Go/NoGo task consisted of Go (requires response) and NoGo (requires no response) conditions. In terms of response time and accuracy rate for the Go/NoGo task, the two groups did not differ significantly. In terms of ERPs, the control group showed greater N2 amplitudes in response to NoGo (NoGo-N2) than to Go stimuli (Go-N2), whereas the schizotypal-trait group showed no significant difference in NoGo-N2 and Go-N2 amplitudes. In addition, the schizotypal-trait group showed reduced NoGo-N2 amplitudes at the frontal site compared to controls, and an association between SPQ scores and NoGo-N2 amplitudes measured at the frontal site. The two groups did not differ in P3 amplitudes. Since the N2 reflects the detection of response conflict and behavioral inhibition, the present results indicate that nonclinical individuals with schizotypal traits have difficulties in detecting response conflict and behavioral inhibition.

Share and Cite:

Lee, J. and Kim, M. (2012) Behavioral inhibition in female college students with schizotypal traits: An event-related potential study. Open Journal of Psychiatry, 2, 362-369. doi: 10.4236/ojpsych.2012.224051.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Harnishfeger, K.K. (1995) The development of cognitive inhibition: Theories, definitions and research evidence. In: Dempster, F.N. and Brainerd, C.J. Eds., New perspectives on interference and inhibition in cognition. Academic Press, San Diego, pp. 176-199
[2] Woolard, A.A., Kose, S., Woodward, N.D., Verbruggen, F., Logan, G.D. and Heckers, S. (2010) Intact associative learning in patients with schizophrenia: Evidence from a Go/NoGo paradigm. Schizophrenia Research, 122, 131-135. doi:10.1016/j.schres.2010.02.1057
[3] Weisbrod, M., Kiefer, M., Marzinzik, F. and Spitzer, M. (2000) Executive control is disturbed in schizophrenia: Evidence from event-related potentials in a Go/NoGo task. Society of Biological Psychiatry, 47, 51-60. doi:10.1016/S0006-3223(99)00218-8
[4] Garavan, H., Ross, T.J., Murphy, K., Roche, R.A.P. and Stein, E.A. (2002) Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820-1829. doi:10.1006/nimg.2002.1326
[5] Liddle, P.F., Kiehl, K.A. and Smith, A.M. (2001) Event- related fMRI study of response inhibition. Human Brain Mapping, 12, 100-109. doi:10.1002/1097-0193(200102)12:2<100::AID-HBM1007>3.0.CO;2-6
[6] Kerns, J.G., Cohen, J.D., MacDonald, A.W., Johnson, M.K., Stenger, V.A., Aizenstein, H. and Carter, C.S. (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833-1839. doi:10.1176/appi.ajp.162.10.1833
[7] Rubia, K., Russell, T., Bullmore, E.T., Soni, W., Brammer, M.J., Simmons, A., Taylor, E., Andrew, C., Giampietro, V. and Sharma, T. (2001) An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophrenia Research, 52, 47-55. doi:10.1016/S0920-9964(00)00173-0
[8] Albanese, A.M., Merlo, A.B., Mascitti, T.A., Tornese, E.B., Gomez, E.E., Konopka, V. and Albanese, E.F. (1995) Inversion of the hemispheric laterality of the anterior cingulate gyrus in schizophrenics. Biological Psychiatry, 38, 13-21. doi:10.1016/0006-3223(94)00257-4
[9] Pantelis, C., Yucel, M., Wood, S.J., McGorry, P. and Velakoulis, P. (2001) The timing and functional consequences of structural brain abnormalities in schizophrenia. Neuroscience News, 4, 36-46.
[10] Bokura, H., Yamaguchi, S. and Kobayashi, S. (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112, 2224-2232. doi:10.1016/S1388-2457(01)00691-5
[11] Falkenstein, M., Hoormann, J. and Hohnsbein, J. (1999) ERP components in Go/NoGo task and their relation to inhibition. Acta Psychologica, 101, 267-291. doi:10.1016/S0001-6918(99)00008-6
[12] Kim, M.S., Kim, Y.Y., Yoo, S.Y. and Kwon, J.S. (2007) Electrophysiological correlates of behavioral response inhibition in patients with obsessive-compulsive disorder. Depression and Anxiety, 24, 22-31. doi:10.1002/da.20195
[13] Fallgatter, A.J. and Strik, W.K. (1999) The NoGo-anteriorization as a neurophysiological standard-index for cognitive response control. International Journal of Psychophysiology, 32, 233-238. doi:10.1016/S0167-8760(99)00018-5
[14] Jodo, E. and Kayama, Y. (1992) Relation of a negative ERP component to response inhibition in a Go/NoGo task. Electroencephalography and Clinical Neurophysiology, 82, 477-482. doi:10.1016/0013-4694(92)90054-L
[15] Donkers, F.C.L. and van Boxtel, G.J.M. (2004) The N2 in Go/NoGo task reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165-176. doi:10.1016/j.bandc.2004.04.005
[16] Ruchsow, M., Groen, G., Kiefer, M., Beschoner, P., Hermle, L., Ebert, D. and Falkenstein, M. (2008) Electrophysiological evidence for reduced inhibitory control in depressed patients in partial remission: A Go/NoGo study. International Journal of Psychophysiology, 68, 209-218. doi:10.1016/j.ijpsycho.2008.01.010
[17] Yeung, N., Cohen, J.D. and Botvinick, M.M. (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review, 111, 931-959. doi:10.1037/0033-295X.111.4.931
[18] Bekker, E.M., Kenemans, J.L. and Verbaten, M.N. (2005) Source analysis of the N2 in an cued Go/NoGo task. Cognitive Brain Research, 22, 221-231. doi:10.1016/j.cogbrainres.2004.08.011
[19] Nieuwenhuis, S., Yeung, N., van den Wildenberg, W. and Ridderinkhof, K.R. (2003) Electrophysiological correlates of anterior cingulate function in a Go/NoGo task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 17-26. doi:10.3758/CABN.3.1.17
[20] Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D. and Cohen, J.D. (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747-749. doi:10.1126/science.280.5364.747
[21] Lau, H., Rogers, R.D. and Passingham, R.E. (2006) Dissociating response selection and conflict in the medial frontal surface. NeuroImage, 29, 446-451. doi:10.1016/j.neuroimage.2005.07.050
[22] Walton, M.E., Devli, J.T. and Rushworth, M.F.S. (2004) Interactions between decision making and performance monitoring with prefrontal cortex. Nature Neuroscience, 7, 1259-1265. doi:10.1038/nn1339
[23] Strik, W.K., Fallgatter, A.J., Brandies, D. and Pascual-Marqui, R.D. (1998) Three-dimensional tomography of event-related potentials during response inhibition: Evidence for phasic frontal lobe activation. Electroencephalography and Clinical Neurophysiology, 108, 406-413. doi:10.1016/S0168-5597(98)00021-5
[24] Bruin, K.J. and Wijers, A.A. (2002). Inhibition, response mode, and stimulus probability: A comparative event-related potential study. Clinical Neurophysiology, 113, 1172-1182. doi:10.1016/S1388-2457(02)00141-4
[25] Kiehl, K.A., Smith, A.M., Hare, R.D. and Liddle, P.F. (2000) An event-related potential investigation of response inhibition in schizophrenia and psychopathy. Society of Biological Psychiatry, 48, 210-221. doi:10.1016/S0006-3223(00)00834-9
[26] Salisbury, D.F., O’Donnell, B.F., McCarley, R.W., Shenton, M.E. and Benavage, A. (1994) The N2 event-related potential reflects attention deficit in schizophrenia. Biological Psychology, 39, 1-13. doi:10.1016/0301-0511(94)90053-1
[27] Siever, L.J. and Davis, K.L. (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. American Journal of Psychiatry, 161, 398-413. doi:10.1176/appi.ajp.161.3.398
[28] Lin, H.F., Liu, Y.L., Liu, C.M., Hung, S.I., Hwu, H.G. and Chen, W.J. (2005) Neuregulin gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychological Medicine, 35, 1589-1598. doi:10.1017/S0033291705005957
[29] Moorhead, T.W.J., Stanfield, A., Spencer, M., Hall, J., McIntosh, A., Qwnes, D.C., Lawrie, S. and Johnstone, E. (2009) Progressive temporal lobe gray matter loss in adolescents with schizotypal traits and mild intellectual impairment. Psychiatry Research: Neuroimaging, 174, 105-109. doi:10.1016/j.pscychresns.2009.04.003
[30] Noguchi, H., Hori, H. and Kunigi, H. (2008) Schizotypal traits and cognitive function in healthy adults. Psychiatry Research, 161, 162-169. doi:10.1016/j.psychres.2007.07.023
[31] Gschwandtner, U., Aston, J., Borgwardt, S., Drewe, M., Feinendegen, C., Lacher, D., Lanzarone, A., Stiegliz, R.D. and Riecher-Rossler, A. (2003) Neuropsychological and neurophysiological findings in individuals suspected to be at risk for schizophrenia: preliminary results from the Basel early detection of psychosis study—Fruherkennung von Psychosen (FEPSY). Acta Psychiatrica Scandinavica, 108, 152-155. doi:10.1034/j.1600-0447.2003.00157.x
[32] Moon, H.O., Yang, I.H., Lee, H.P., Kim, M.E. and Ham, W. (1997) The preliminary study on the validation of Schizotypal Personality Questionnaire-Korean version. Journal of Korean Neuropsychiatry Association, 36, 329-343.
[33] Raine, A. (1991) The SPQ: A scale for the assessment of schizotypal personality based on DSM-Ⅲ-R criteria. Schizophrenia Bulletin, 17, 555-564.
[34] First, M.B., Spitzer, R.L., Gibbson, M. and Williams, J.B.W. (1996) Structured clinical interview for DSM-IV Axis I disorder. New York State Psychiatric Institute, New York.
[35] Tucker, D.M. (1993) Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalography and Clinical Neurophysiology, 87, 154-163. doi:10.1016/0013-4694(93)90121-B
[36] Dien, J. (1998) Issues in the application of the average reference: Review, critiques, and recommendations. Behavior Research Methods, Instruments, & Computers, 30, 34-43. doi:10.3758/BF03209414
[37] Begre, S., Kleinlogel, H., Kiefer, C., Strik, W., Dierks, T. and Federspiel, A. (2008) White matter anisotropy related to electrophysiology of first episode schizophrenia during NoGo inhibition. Neurobiology of Disease, 30, 270-280.
[38] Kaladjian, A., Jeanningros, R., Azorin, J.M., Grimault, S., Anton, J.L. and Mazzola-Pomietto, P. (2007) Blunted Activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia. Schizophrenia Research, 97, 184-193. doi:10.1016/j.schres.2007.07.033
[39] Pallanti, S., Castrllini, G., Chamberlain, S.R., Quercioli, L., Zaccara, G. and Finegerg, N.A. (2009) Cognitive event-related potentials differentiate schizophrenia with obsessive-compulsive disorder (schizo-OCD) from OCD and schizophrenia without OC symptoms. Psychiatry Research, 170, 52-60. doi:10.1016/j.psychres.2008.11.002
[40] Ford, J.M., Gray, M., Whitfield, S.L., Turken, A.U., Gloverm G., Faustman, W.O. and Mathalon, D.H. (2004) Acquiring and inhibiting prepotent response in schizophrenia. Archives of General Psychiatry, 61, 119-129. doi:10.1001/archpsyc.61.2.119
[41] Polich, J. (2007) Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. doi:10.1016/j.clinph.2007.04.019
[42] Cornblatt, B.A. and Keilp, J.G. (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20, 31-46.
[43] Carriero, L., Zalla, T., Budai, R. and Battaglini, P.P. (2007) Inhibition of wrong responses and conflict resolution: An electroencephalogram study. Neuroreport, 18, 793-796. doi:10.1097/WNR.0b013e3280c1e330
[44] Thomas, S.J., Gonsalvez, C.J. and Johnstone, S.J. (2009) Sequence effects in the Go/NoGo task: Inhibition and facilitation. International Journal of Psychophysiology, 74, 209-219. doi:10.1016/j.ijpsycho.2009.09.002
[45] Fallgatter, A.J., Bartsch, A.J., Zielasek, J. and Herrmann, M.J. (2003) Brain electrical dysfunction of the anterior cingulate in schizophrenic patients. Psychiatry Research: Neuroimaging, 124, 37-48. doi:10.1016/S0925-4927(03)00072-6
[46] Arce, E., Leland, D.S., Miller, D.A., Simmons, A.N., Winternheimer, K.C. and Paulus, M.P. (2006) Individuals with schizophrenia present hypo-and hyperactivation during implicit cueing in an inhibitory task. Neuroimage, 32, 704-713. doi:10.1016/j.neuroimage.2006.04.189
[47] Takahashi, T., Suzuki, M., Kawasaki, Y., Kurokawa, K., Hagino, H., Yamashita, I., Zhou, S.Y., Nohara, S., Nakamura, K., Seto, H. and Kurachi, M. (2002) Volumetric magnetic resonance imaging study of the anterior cingulate gyrus in schizotypal disorder. European Archives of Psychiatry and Clinical Neurosciences, 252, 268-277. doi:10.1007/s00406-002-0392-3
[48] Kopp, B., Mattler, U., Goertz, R. and Rist, F. (1996) N2, P3 and the lateralized readiness potential in a NoGo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19-27. doi:10.1016/0921-884X(96)95617-9

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.