Share This Article:

Self-repairing material systems―a dream or a reality?

Full-Text HTML Download Download as PDF (Size:4727KB) PP. 873-901
DOI: 10.4236/ns.2010.28110    9,658 Downloads   22,862 Views   Citations
Author(s)    Leave a comment


Currently, most industrial materials rely entirely on passive protection mechanisms; such me chanisms are readily applicable and universal for many different materials systems. However, they will always stay passive, and therefore their lifetime and functionality is limited and related to the amount of protective additives and the intensity of their consumption. Therefore, better, and preferentially active process for the protection/repair of damaged materials―selfrepairing processes―were developed and need to be developed further. Although it sounds futuristic or like a fiction in the modern, trendy times, which in many ways affects also directions of research; self healing of material systems exists already for a long time in all sorts of systems of materials or functionalities. The aim of this work is to go beyond the scope of a classical review the ones published recently in this field which almost entirely focused only onto polymeric systems. In this work, an analysis of the underlying functional and constructional principles of existing natural and synthetically selfhealing systems spanning over a range of classes of materials is given leading to general rules and principles for the design of new and application tailored selfhealing material systems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Fischer, H. (2010) Self-repairing material systems―a dream or a reality?. Natural Science, 2, 873-901. doi: 10.4236/ns.2010.28110.


[1] Fratzl, P. and Weinkamer, R. (2007) Hierarchical structure and repair of bone: Deformation, remodeling, healing. Self Healing Materials, An Alternative Approach to 20 Centuries of Materials Science, Series: Springer Series in Materials Science, 100, 323335.
[2] Farrar, C.R. and Worden, K. (2007) An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A, 365(1851), 303315.
[3] Asai, S., Koumoto, K., Matsushita, Y., Yashima, E., Morinaga, M., Takeda, K., Iritani, E., Tagawa, T., Tanahashi, M. and Miyazawa, K.I. (2003) Advances in natureguided materials processing. Science and Technology of Advanced Materials, 4(5), 421433.
[4] Bergman, S.D. and Wudl, F. (2008) Mendable polymers. Journal of Materials Chemistry, 18(1), 4162.
[5] Wool, R.P. (2008) Selfhealing materials: A review. Soft Matter, 4(3), 400418.
[6] Wu, D.Y., Meure, S. and Solomon, D. (2008) Selfhealing polymeric materials: A review of recent developments. Progress in Polymer Science, 33(5), 479522.
[7] Albert, S.F. (1981) Electrical stimulation of bone repair. Clinical Podiatric Medical Surgery, 8(4), 923935.
[8] Coyle, E.A., Maguire, L.P. and McGinnity, T.M. (2004) Self repair of embedded systems. Engineering Applications of Artificial Intelligence, 17(1), 19.
[9] Williams, K.A., Dreyer, D.R. and Bielawski, C.W. (2008) The underlying chemistry of selfhealing materials. MRS Bulletin, 33(8), 759765.
[10] de Gennes, P.G. (1971) Reptation of a polymer chain in the presence of fixed obstacles. Journal of Chemical Physics, 55(2), 572579.
[11] Prager, S. and Tirell, M. (1981) The healing process at polymerpolymer interfaces. Journal of Chemical Physics, 75(10), 51945198.
[12] Jud, K. and Kausch, H.H. (1979) Load transfer through chain molecules after interpenetration at interfaces. Polymer Bulletin, 1(1), 697707.
[13] Wool, R.P. and O’Connor, K.M. (1981) A theory of crack healing in polymers. Journal of Applied Physics, 52(10), 59535963.
[14] Kim, Y.H. and Wool, R.P. (1983) A theory of healing at a polymerpolymer interface. Macromolecules, 16(7), 11151120.
[15] Jud, K., Kausch, H.H. and Williams, J.G. (1981) Fracture mechanics studies of crack healing and welding of polymers. Journal of Material Science, 16(1), 204210.
[16] Boiko, Y. M. and LyngaaeJ?rgensen, J. (2004) Healing of interfaces of high and ultrahighmolecularweight polystyrene below the bulk Tg. Polymer, 45(25), 8541 8549.
[17] Guerin, G., Mauger, F. and Prud’homme, R.E. (2003) The adhesion of amorphous polystyrene surfaces below Tg. Polymer, 44(24), 74777784.
[18] Brown, H.R. and Russell, T.P. (1996) Entanglements at polymer interfaces. Macromolecules, 29(2), 798800.
[19] Silberberg, A. (1988) Distribution of segments near the surface of a melt of linear flexible macromolecules: Effect on surface tension. Journal of Colloid and Interface Science, 125(1), 1422.
[20] Yamaguchi, M., Ono, S. and Terano, M. (2007) Selfrepairing property of polymer network with dangling chains. Materials Letters, 61(6), 13961399.
[21] Hayes, S.A., Jones, F.R., Marshiya, K. and Zhang, W. (2007) A selfhealing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38(4), 11161120.
[22] Hayes, S.A., Zhang, W., Branthwaite, M. and Jones, F.R. (2007) Selfhealing of damage in fibrereinforced polymermatrix composites. Journal of the Royal Society Interface, 4(13), 381387.
[23] Zako, M. and Takano, N. (1999) Intelligent material systems using epoxy particles to repair microcracks and delamination in GFRP. Journal of Intelligent Material Systems and Structures, 10(10), 836841.
[24] Meure, S., Wu, D.Y. and Furman, S. (2009) Polyethylenecomathacrylic acid healing agents for mendable epoxy resins. Acta Materialia, 57(14), 43124320.
[25] Liu, W., Sun, X. and Khaleel, M.A. (2008) Predicting Young's modulus of glass/ceramic sealant for solid oxide fuel cell considering the combined effects of aging, microvoids and selfhealing. Journal of Power Sources, 185(2), 11931200.
[26] Seo, S.H., Kim, Y.W. and Chang, J.Y. (2005) Smectic layered polymer networks based on side chain liquid crystalline polymers having thermally reversible urea bonds. Macromolecules, 38(5), 15251527.
[27] Otsuka, H., Aotani, K., Amamoto, Y. and Takahara, A. (2007) Thermal reorganization and molecular weight control of dynamic covalent polymers containing alko xyamines in their main chains. Macromolecules, 40(5), 14291434.
[28] Mee, M.A.J., Goossens, J.G.P. and v. Duin, M. (2008) Thermoreversible crosslinking of maleated ethylene/ propylene copolymers with diamines and aminoalcohols. Polymer, 49(5), 12391248.
[29] Diels, O. and Alder, K. (1928). Synthesen in der hydroa romatischen Reihe. Liebigs Annalen der Chemie, 460(1), 98122.
[30] Craven, J. M., US patent 3.435.003 (1969).
[31] Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K. and Wudl, F., (2002) A thermally remendable crosslinked polymeric material. Science, 295(5560), 16981702.
[32] Chen, X., Wudl, F., Mal, A., Shen, H. and Nutt, S.R. (2003) New thermally remendable highly crosslinked polymeric materials. Macromolecules, 36(6), 18021807.
[33] Murphy, E.B., Bolanos, E., SchaffnerHamann, C., Wudl, F., Nutt, S.R. and Auad, M.L. (2008) Synthesis and characterization of a singlecomponent thermally remendable polymer network: Staudinger and stille revisited. Macromolecules, 41(14), 52035209.
[34] Wouters, M., Craenmehr, E., Tempelaars, K., Fischer, H., Stroeks, N. and van Zanten, J. (2008) Preparation and properties of a novel remendable coating concept. Progress in Organic Coatings, 64(23), 156162.
[35] Schuman T.P. (2007) Smart corrosion inhibition strategies: Substrate, coating, and inhibitors. JCT Coatings Tech, 4(2), 6070.
[36] Wang, Y., Bolanos, E., Wudl, F., Hahn, T. and Kwok, N. (2007) Selfhealing polymers and composites based on thermal activation. Proceedings of SPIE―The International Society for Optical Engineering, 6526, 112.
[37] Liu, Y.L. and Hsieh, C.Y. (2006) Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science: Part A: Polymer Chemistry, 44(2), 905913.
[38] Liu, Y.L. and Chen, Y.W. (2007) Thermally reversible crosslinked polyamides with high toughness and self repairing ability from maleimide and furanfunctiona lized aromatic polyamides. Macromolecular Chemistry and Physics, 208(2), 224232.
[39] Aubert, J.H. (2003) Thermally removable epoxy adhesives incorporating thermally reversible DielsAlder adducts. The Journal of Adhesion, 79(6), 609616.
[40] Liu, Y.L., Hsieh, C.Y. and Chen, Y.W. (2006) Thermally reversible crosslinked polyamides and thermo responsive gels by means of DielsAlder reaction. Polymer, 47(8), 25812586.
[41] Gotsmann, B., Duerig, U., Frommer, J. and Hawker, C.J. (2006) Exploiting chemical switching in a dielsalder polymer for nanoscale probe lithography and data storage. Advanced Functional Materials, 16(11), 14991505.
[42] Park, J.S., Takahashi, K., Guo, Z., Wang, Y., Bolanos, E., HamannSchaffner, C., Murphy, E., Wudl, F. and Hahn, H.T. (2008) Towards development of a selfhealing composite using a mendable polymer and resistive heating. Journal of Composite Materials, 42(26), 28692881.
[43] Plaisted, T.A., Amirkhizi, A.V., Arbelaez, D., Nemat Nasser, S.C. and NematNasser, S. (2003) Selfhealing structural composites with electromagnetic functionality. Proceedings of SPIE―The International Society for Optical Engineering, 5054, 372381.
[44] Kirkby, E.L., Rule, J.D., Michaud, V.J., Sottos, N.R., White, S.R. and Ma?nson, J.A.E. (2008) Embedded shape memory alloy wires for improved performance of selfhealing polymers. Advanced Functional Materials, 18(15), 22532260.
[45] Li, G. and John, M. (2008) A selfhealing smart syntactic foam under multiple impacts. Composites Science and Technology, 68(1516), 33373343.
[46] Brunsveld, L., Folmer, B.J.B., Meijer, E.W. and Sijbesma, R.P. (2001) Supramolecular polymers. Chemical Reviews, 101(12), 40714098.
[47] Chino, K. and Ashiura, M. (2001) Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks. Macromolecules, 34(26), 92019204.
[48] Kalista, S.J.Jr. and Ward, T.C. (2007) Thermal characteristics of the selfhealing response in poly(ethylene comethacrylic acid) copolymers. Journal of the Royal Society Interface, 4(13), 405411.
[49] Varley, R.J. and v.d. Zwaag, S. (2008) Towards an understanding of thermally activated selfhealing of an ionomer system during ballistic penetration. Acta Materialica, 56(19), 57375750.
[50] Chung, C.M., Roh, S.Y., Cho, S.Y. and Kim, J.G. (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chemistry of Materials, 16(21), 39823984.
[51] Scott, T.F., Schneider, A.D., Cook, W.D. and Bowmen, C.N. (2005) Chemistry: Photoinduced plasticity in cross linked polymers. Science, 308(5728), 16151617.
[52] Williams, K.A., Boydston, A.J. and Bielawski, C.W. (2007) Towards electrically conductive, selfhealing materials. Journal of the Royal Society Interface, 4(13), 359362.
[53] Kawagoe, M., Nakanishi, M., Qui, J. and Morita, M. (1997) Growth and healing of a surface crack in poly (methyl methacrylate) under case II diffusion of methanol. Polymer, 38(24), 59695975.
[54] Hsieh, H.C., Yang, T.J. and Lee, S. (2001) Crack healing in poly(methyl methacrylate) induced by cosolvent of methanol and ethanol. Polymer, 42(3), 12271241.
[55] Egloffstein, T.A. (2001) Natural bentonitesInfluence of the ion exchange and partial desiccation on permeability and selfhealing capacity of bentonites used in GCL. Geotextiles and Geomembranes, 19(7), 427444.
[56] Shi, C. and Booth, R. (2005) Laboratory Development and field demonstration of selfsealing/selfhealing landfill liner. Waste Management, 25(3), 231238.
[57] Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. Materials Journal, 96(4), 448454.
[58] Hearn, N. (1998) Selfsealing, autogenous healing and continued hydration: What is the difference? Materials and Structures/Materiaux et Constructions, 31(8), 563 567,
[59] Loving, N.W. (1968) Autogenous healing of concrete. American Concrete Pipe Association, Bulletin, 13, 3.
[60] Wagner, E.F. (1974) Autogenous healing of cracks in cementmortar linings for grayiron and ductileiron water pipe. Journal of American Water Works Association, 66(6), 358360.
[61] Soroker, V.J. and Denson, A.J. (1926) Autogenous healing of concrete. Zement, 25, 30.
[62] Brandeis, F. (1937) Autogenous healing of concrete. Beton und Eisen, 36, 12.
[63] Powe, T.C., Copeland, L.E., Hayes, J.C. and Mann, H.M. (1954) Permeability of Portland cement pastes. Journal of the American Concrete Institute, 51(3), 285298.
[64] Sahmaran, M. (2007) Effect of flexure induced transverse crack and selfhealing on chloride diffusivity of reinforced mortar. Journal of Materials Science, 42(22), 91319136.
[65] Zhong, W. and Yao, W. (2008) Influence of damage degree on selfhealing of concrete. Construction and Building Materials, 22(6), 11371142.
[66] Li, V.C. and Yang, E.H. (2007) Self healing in concrete materials. Self Healing Materials, An Alternative Approach to 20 Centuries of Materials Science, Series: Springer Series in Materials Science, 100, 161193.
[67] Jonker, H. (2007) Self healing in concrete materials. Self Healing Materials, An Alternative Approach to 20 Centuries of Materials Science, Series: Springer Series in Materials Science, 100, 195204.
[68] Sugama, T. and Gawlik, K. (2003) Selfrepairing poly (phenylenesulfide) coatings in hydrothermal environments at 200oC. Materials Letters, 57(2627), 42824290.
[69] Kim, Y.R., Little, D.N. and Lytton, R.L. (2003) Fatigue and healing characterization of asphalt mixes. Journal of Materials in Civil Engineering (ASCE), 15(1), 7583.
[70] Cordier, P., Tournilhac, F., SouliéZiakovic, C. and Leibler, L. (2008) Selfhealing and thermoreversible rubber from supramolecular assembly. Nature, 451(7181), 977980.
[71] Lumley, R.N., O’Donnell, R.G., Polmear, I.J. and Griffiths, J.R. (2005) Enhanced fatigue resistance by underageing an AlCuMgAg alloy. Matererials Science Forum, 29, 256261.
[72] Shiya, N., Kyono, J. and Laha, K. (2006) Selfhealing effect of boron nitride precipitation on creep cavitation in austenitic stainless steel. Journal of Intelligent Material Systems and Structures, 17(12), 11271133.
[73] Abe, O., Ohwa, Y. and Kuranobu, Y.I. (2006) Possibility of enhanced strength and selfrecovery of surface damages of ceramics composites under oxidative conditions. Journal of the European Ceramic Society, 26(45), 689695.
[74] Bennett I.J. and Sloof, W.G. (2006) Modeling the influence of reactive elements on the work of adhesion between a thermally grown oxide and a bond coat alloy. Materials and Corrosion, 57(3), 223229.
[75] Zhang, X., Xu, L., Du, S., Han, W. and Han, J. (2008) Crackhealing behavior of zirconium diboride composite reinforced with silicon carbide whiskers. Scripta Materialia, 59(11), 12221225.
[76] Ando, K., Kim, B.S., Chu, M.C., Saito, S., Takahashi, K. (2004) Crackhealing and mechanical behaviour of Al2O3/SiC composites at elevated temperature. Fatique and Fracture of Engineering Materials and Structures, 27(7), 533541.
[77] Ando, K., Chu, M.C. and Mastusita, S. (2003) Effect of crackhealing and prooftesting procedures on fatigue strength and reliability of Si3N4/SiC composites. Journal of the European Ceramic Society, 23(6), 977984.
[78] Song, G.M., Pei, Y.T., Sloof, W.G., Li, S.B., De Hosson, J.Th.M. and van der Zwaag, S. (2008) Oxidationinduced crack healing in Ti3AlC2 ceramics. Scripta Materialia, 58(1), 1316.
[79] Devanathan, R. and Weber, W.J. (2008) Dynamic annealing of defects in irradiated zirconiabased ceramics. Journal of Materials Research, 23(3), 593595.
[80] Hikasa, A., Sekino, T., Hayashi, Y., Rajagopalan, R. and Niihara, K. (2004) Preparation and corrosion studies of selfhealing multilayered nano coatings of silica and swelling clay. Materials Research Innovations, 8(2), 8488.
[81] Miccichè, F., Fischer, H., Varley, R. and van der Zwaag, S. (2007) Moisture induced crack filling in barrier coatings containing montmorillonite as an expandable phase. Surface & Coatings Technology, 202(14), 33463353.
[82] Dry, C. (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Marterials and Structures, 3(2), 118123.
[83] Dry, C., Dry, C. and McMillan, W. (1996) Threepart methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Marterials and Structures, 5(3), 297300.
[84] Dry, C., (2000) Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cement and Concrete Research, 30(12), 19691977.
[85] Dry, C., Corsaw, M. and Bayer, E. (2003) A comparison of internal selfrepair with resin injection in repair of concrete. Journal of Adhesion Science and Technology, 17(1), 7989.
[86] Dry, C. (1996) Procedure developed for selfrepair of polymeric matrix composite materials. Composite Structures, 35(3), 263269.
[87] Bleay, S.M., Loader, C.B., Hawyes, V.J., Humberstone, L. and Curtis, P.T. (2001) A smart repair system for polymer matrix composites. Composites―Part A: Applied Science and Manufacturing, 32(12), 17671776.
[88] Pang, J.W.C. and Bond, I.P. (2005) 'Bleeding composites'―Damage detection and selfrepair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 36(2), 183188.
[89] Motuku, M., Vaidya, U.K. and Janowski, G.M. (1999) Parametric studies on selfrepairing approaches for resin infused composites subjected to low velocity impact. Smart Materials and Structures, 8(5), 623638.
[90] Trask, R.S. and Bond, I.P. (2006) Selfhealing composite sandwich structures. Smart Materials and Structures, 15(3), 704710.
[91] White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N. and Viswanathan, S. (2001) Autonomic healing of polymer composites. Nature, 409(6822), 794779.
[92] Yan, C.Y., Min, Z.R., Ming, Q.Z., Chen, J., Gui, C.Y. and Xue, M.L. (2008) Selfhealing polymeric materials using epoxy/mercaptan as the healant. Macromolecules, 41(14), 51975202.
[93] Jones, A.S., Rule, J.D., Moore, J.S., Sottos, N.R. and White, S.R. (2007) Selfhealing of damage in fibrereinforced polymermatrix composites. Journal of the Royal Society Interface, 4(13), 395403.
[94] Cho, S.H., Andersson, H.M., White, S.R., Sottos, N.R. and Brun, P.V. (2006) Polydiniethylsiloxanebased self healing materials. Advanced Materials, 18, 9971000.
[95] Brown, E.N., Sottos, N.R. and White, S.R. (2002) Fracture testing of a selfhealing polymer composite. Experimental Mechanics, 42(4), 372379.
[96] Blaiszik, B.J., Sottos, N.R. and White, S.R. (2008) Nanocapsules for selfhealing materials. Composites Science and Technology, 68(34), 978986.
[97] Yin, T., Rong, M.Z., Zhang, M.Q. and Yang, G.C. (2007) Selfhealing epoxy composites―preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology, 67(2), 201212.
[98] Kumar, A., Stephenson, L.D. and Murray, J.N. (2006) Selfhealing coatings for steel. Progress in Organic Coatings, 55(3), 244253.
[99] He, X. and Shi, X. (2009) Selfrepairing coating for corrosion protection of aluminum alloys. Progress in Organic Coatings, 65(1), 3743.
[100] Suryanarayana, C., Rao, K.C. and Kumar, D. (2008) Preparation and characterization of microcapsules containing linseed oil and its use in selfhealing coatings. Progress in Organic Coatings, 63(1), 7278.
[101] SauvantMoynot, V., Gonzalez, S. and Kittel, J. (2008) Selfhealing coatings: An alternative route for anticorrosion protection. Progress in Organic Coatings, 63(3), 307315.
[102] Caruso, M.M., Blaiszik, B.J., White, S.R., Sottos, N.R. and Moore, J.S. (2008) Full recovery of fracture toughness using a nontoxic solventbased selfhealing system. Advanced Functional Materials, 18(13), 18981904.
[103] Caruso, M.M., Delafuente, D.A., Ho, V., Sottos, N.R., Moore, J.S. and White, S.R. (2007) Solventpromoted self healing epoxy materials. Macromolecules, 40(25), 88308832.
[104] Mookhoek, S.D., Mayo, S.C., Hughes, A.E., Fischer, H.R. and Zwaag, v.d.S. (2010) Applying SEMbased Xray microtomography to observe selfhealing in solvent encapsulated thermoplastic materials. Advanced Engineering Materials, 12(3), 228
[105] Bon, S.A.F., Mookhoek, S.D., Colver, P.J., Fischer, H.R. and van der Zwaag, S. (2007) Route to stable non spherical emulsion droplets. European Polymer Journal, 43(11), 48394842
[106] Carlson, J.A., English, J.M. and Coe, D.J. (2006) A flexible, selfhealing sensor skin. Smart Materials and Structures, 15(5), N129N135.
[107] Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S. and White, S.R. (2007) Selfhealing materials with microvascular networks. Nature Materials, 6(8), 581585.
[108] Toohey, K.S., Sottos, N.R. and White, S.R. (2009) Characterization of microvascularbased selfhealing coatings. Experimental Mechanics, 49(5), 707717.
[109] Williams, H.R., Trask, R.S., Knights, A.C., Williams, E.R. and Bond, I.P. (2008) Biomimetic reliability strategies for selfhealing vascular networks in engineering materials. Journal of the Royal Society Interface, 5(24), 735747.
[110] Williams, H.R., Trask, R.S., Weaver, P.M. and Bond, I.P. (2008) Minimum mass vascular networks in multifunctional materials. Journal of the Royal Society Interface, 5(18), 5565.
[111] Liu, H.A., Gnade, B.E. and Baalkus, Jr.K.J. (2008) A delivery system for selfhealing inorganic films. Advanced Functional Materials, 18(22), 110.
[112] Martin, P. (1997) Wound healing―aiming for a perfect skin regeneration. Science, 276(5309), 7581.
[113] Lee, J.Y., Buxton, G. and Balazs, A.C. (2004) Using nanoparticles to create selfhealing composites. Journal of Chemical Physics, 121(11), 55315540.
[114] Tyagi, S., Lee, J.Y., Buxton, G.A. and Balazs, A.C. (2004) Using nanocomposite coatings to heal surfacebdefects. Macromolecules, 37(24), 91609168.
[115] Smith, K.A., Tyagi, S. and Balazs, A. (2005) Healing surface defects with polymer nanocomposites containing spheres. AIChE Annual Meeting, Conference Proceedings, 4717.
[116] Smith, K.A., Tyagi, S. and Balazs, A.C. (2005) Healing surface defects with nanoparticle filled polymer coatings: Effect of particle geometry. Macromolecules, 38(24), 1013810147.
[117] Gupta, S., Zhang, Q., Emrick, T., Balazs, A.C. and Russell, T.P. (2006) Entropydriven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 5(3), 229233.
[118] Verberg, R., Dale, A.T., Kumar, P., Alexeev, A. and Balazs, A.C. (2007) Healing substrates with mobile, particlefilled microcapsules: Designing a 'repair and go' system. Journal of the Royal Society Interface, 4(13), 349357.
[119] Takeda, K., Tanahashi, M. and Unno, H. (2003) Selfrepairing mechanism of plastics. Science and Technology of Advanced Materials, 4(5), 435444.
[120] Shinya, N., Kyono, J. and Laha, K. (2006) Selfhealing effect of boron nitride precipitation on creep cavitation in austenitic stainless steel. Journal of Intelligent Material Systems and Structures, 17(12), 11271133.
[121] Kessler, S.S. and Spearing, S.M. (2003) Selection of materials and sensors for health monitoring of composite structures. Proceedings of Materials Research Society Symposium, 785, 365375.
[122] Mal, A., Banerjee, S. and Ricci, F. (2007) An automated damage identification technique based on vibration and wave propagation data. Philosophical Transactions of the Royal Society A, 365(1851), 479491.
[123] Hayes, S.A. and Hue, L. (2002) A resistancebased damage location sensor for carbonfibre composites. Smart Materials and Structures, 11(6), 966969.
[124] Thostenson, E.T. and Chou, T.W. (2006) Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing. Advanced Materials, 18(21), 28372841.
[125] Thostenson, E.T. and Chou, T.W. (2008) Carbon nanotubebased health monitoring of mechanically fastened composite joints. Composites Science Technology, 68(12), 25572561.
[126] Zhang, W., Sakalkar, V. and Koratkar, N. (2007) In situ health monitoring and repair in composites using carbon nanotube additives. Applied Physics Letters, 91(13), 133102133104.
[127] Worden, K. and Manson G. (2007) The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A, 365 (1851), 515537.
[128] Nosonovsky, M., Amano, R., Lucci, J.M. and Rohatgi, P.K. (2009) Physical chemistry of selforganization and selfhealing in metals. Physical Chemistry Chemical Physics, 11(41), 95309536.
[129] Dementsov, A. and Privman, V. (2008) Threedimensional percolation modeling of selfhealing composites. Physical Review E―Statistical, Nonlinear, and Soft Matter Physics, 78(2), 021104.
[130] Huang, R.F., Chen, C.H. and Wu, C.W. (2007) Economic aspects of memory builtin selfrepair. IEEE Design & Test of Computers, 24(2), 164172.
[131] Gosh, D., Sharman, R., Rao, H.R. and Upadhaya, S. (2007) Selfhealing systems―survey and synthesis. Decision, Support Systems, 42(4), 21642185
[132] Peairs, D.M., Park, G. and Inman, D.J. (2004) Practical issues of activating selfrepairing bolted joints. Smart Materials and Structures, 13(6), 14141423.
[133] Wang, H.W., Yuan, Y.C., Rong, M.Z. and Zhang, M.Q. (2010) SelfHealing of thermoplastics via living polymerisation. Macromolecules, 43(2), 595598.
[134] Cho, S.H., White, S.R. and Braun, P.V. (2009) Selfhealing polymer coatings. Advanced Materials, 21(6), 645649.
[135] Beiermann, B.A., Keller, M.W. and Sottos, N.R. (2009) Selfhealing flexible laminates for resealing of puncture damage. Smart Materials and Structures, 18(8), 17.
[136] Caruso, M.M., Schelkopf, S.R., Jackson, A.C., Landry, A.M., Braun, P.V. and Moore, J.S. (2009) Microcapsules containing suspensions of carbon nanotubes. Journal of Materials Chemistry, 19(34), 60936096.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.