Share This Article:

Separation and Recovery of Iodine from Aqueous Solution by Permeation and Chemical Desorption (PCD) Using a Silicone Rubber Membrane

Abstract Full-Text HTML Download Download as PDF (Size:805KB) PP. 508-513
DOI: 10.4236/aces.2012.24062    5,082 Downloads   8,929 Views   Citations

ABSTRACT

New technologies for iodine separation and recovery are required to decrease environmental pollution and improve iodine production. Separation and recovery of iodine (I2) in aqueous solution was achieved using permeation and chemical desorption (PCD) with a silicone rubber membrane (SRM). The SRM separated an aqueous feed solution from an alkaline or reducing recovery solution such as a mixture of sodium hydrate and sodium sulfate. The I2 crossed the membrane from the aqueous feed solution into the recovery solution, where it was converted into iodide (I–). Iodide in the recovery solution did not return to the feed solution across the SRM. An acidic feed solution promoted a high recovery of iodine. The permeation process followed first-order kinetics, allowing the overall mass-transfer coefficient and parameters related to permeation of I2 through the SRM to be determined. Permeability of I2 increased with temperature, and the apparent activation energy (Ea) for penetration of I2 through the SRM was determined. The value of Ea for I2 was of the same order of magnitude as those for phenols and anilines. The large membrane/aqueous distribution coefficient for I2 indicated that I2 had a high affinity toward the SRM. These results indicate that the PCD method is effective and powerful for separation and recovery of iodine from aqueous solutions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Sawai, H. Tomizuka, N. Hatanaka, T. Minami, M. Kikuchi and T. Ishii, "Separation and Recovery of Iodine from Aqueous Solution by Permeation and Chemical Desorption (PCD) Using a Silicone Rubber Membrane," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 508-513. doi: 10.4236/aces.2012.24062.

References

[1] B. Aydogan, J. L. TijanaRajh, A. Chaudhary, S. J. Chmura, C. Pelizzari, C. Wietholt, M. Kurtoglu and P. Redmond, “AuNP-DG: Deoxyglucose-Labeled Gold Nanoparticles as X-Ray Computed Tomography Contrast Agents for Cancer Imaging,” Molecular Imaging and Biology, Vol. 12, No. 5, 2010, pp. 463-467. doi:10.1007/s11307-010-0299-8
[2] J. Luo, Y. Deng and Y. Sun, “Antimicrobial Activity and Biocompatibility of Polyurethane—Iodine Complexes,” Journal of Bioactive and Compatible Polymers, Vol. 25, No. 2, 2010, pp. 185-206
[3] P. A. Lyday, “Iodine,” In: US Geological Survey Minerals Yearbook—1999, US Geological Survey Publications, Reston, 1999.
[4] S. Sunagawa, “History of Iodine Production,” Journal of the Japanese Society for the History of Chemistry, Vol. 24, No. 4, 1997, pp. 281-294. (In Japanese)
[5] F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. Lu, Z., M. Jonsson and L. Kloo, “Commemorating Two Centuries of Iodine Research: An Interdisciplinary Overview of Current Research,” Angewandte Chemie International Edition, Vol. 50, No. 49, 2011, pp. 11598-11620. doi:10.1002/anie.201100028
[6] I. Mita, Y. Hioguchi and T. Hoguchi, “Concentration Mechanisms of Iodine Contained in Brine,” Bulletin of the Society of Sea Water Science, Japan, Vol. 60, No. 2, 2006, pp. 91-97.
[7] J. B. Snape and M. Nakajima, “Processing of Agricultural Fats and Oils Using Membrane Technology,” Journal of Food Engineering, Vol. 30, No. 1, 1996, pp. 1-41. doi:10.1016/S0260-8774(96)00053-2
[8] M. T. Ravanchi, T. Kaghazchi and A. Kargari, “Application of Membrane Separation Processes in Petrochemical Industry: A Review,” Desalination, Vol. 235, No. 1-3, 2009, pp. 199-244. doi:10.1016/j.desal.2007.10.042
[9] M. Kikuchi, K. Sato and T. Minami, JP Patent 2001-293472, 2001.
[10] M. Kikuchi, K. Sato and T. Minami, JP Patent 2002-331228, 2002.
[11] J. Sawai, N. Ito, T. Minami and M. Kikuchi, “Separation of Low Volatile Organic Compounds, Phenol and Aniline Derivatives, from Aqueous Solution Using Silicone Rubber Membrane,” Journal of Membrane Science, Vol. 252, No. 1-2, 2005, pp. 1-7. doi:10.1016/j.memsci.2004.06.018
[12] J. Sawai, K. Higuchi, T. Minami and M. Kikuchi, “Removal and Permeation Characteristics of 4-Substituted Phenol and Aniline Derivatives in Aqueous Solution Using a Silicone Rubber Membrane,” Chemical Engineering Journal, Vol. 152, No. 1, 2009, pp. 133-138. doi:10.1016/j.cej.2009.04.003
[13] J. Sawai, K. Sahara, T. Minami and M. Kikuchi, “Separation of Pentachlorophenol in Aqueous Phase by Silicone Rubber Membrane,” Advances in Chemical Engineering and Science, Vol. 2, No. 3, 2012, pp. 372-378. doi:10.4236/aces.2012.23044
[14] F. C. Ferreira, S. Han and A. G. Livingston, “Recovery of Aniline from Aqueous Solution Using the Membrane Aromatic Recovery System,” Industrial & Engineering Chemistry Research, Vol. 41, No. 11, 2002, pp. 2766-2774. doi:10.1021/ie010746l
[15] F. C. Ferreira, S. Han, A. Boam, S. Zhang and A. G. Livingston, “Membrane Aromatic Recovery System (MARS): Lab Bench to Industrial Pilot Scale,” Desalination, Vol. 148, No. 1-3, 2002, pp. 267-273. doi:10.1016/S0011-9164(02)00709-9
[16] “Kagaku Daijiten,” Kyoritsu Shuppan, Tokyo, 1963, p. 447.
[17] J. Hur, J. P. O’Connell, K. K. Bae, K. S. Kang and J. W. Kang,” Measurements and Correlation of Solid-Liquid Equilibria of the HI + I2+ H2O System,” Internatinal Journal of Hydrogen Energy, Vol. 36, No. 14, 2011, pp. 8187-8191. doi:10.1016/j.ijhydene.2011.04.125
[18] N. Watanabe and T. Miyauchi, “The Permeation of Iodine through a Diaphragm Type Liquid Membrane—The Diffusion Coefficient of Iodine in Poly (Dimethylsiloxane),” Kagaku Kogaku Ronbunshu, Vol. 2, No. 3, 1976, pp. 262-265. (In Japanese) doi:10.1252/kakoronbunshu.2.262
[19] M. Imai, S. Furisaki and T. Miyauchi, “Separation of Volatile Materials by Gas Membrane,” Industrial & Engineering Chemistry Process Design and Research, Vol. 21, No. 3, 1982, pp. 421-426. doi:10.1021/i200018a013
[20] N. Watanabe and T. Miyauchi, “Determination of Solubility Parameter For Siloxane Segment,” Journal of Chemical Engineering of Japan, Vol. 6, No. 2, 1973, pp. 109-114. doi:10.1252/jcej.6.109
[21] S. C. George, M. Knorgen and S. Thomas, “Effect of Nature and Extent Cross-Linking on Swelling and Mechanical Behavior of Styrene-Butadiene Rubber Membrane,” Journal of Membrane Science, Vol. 163, No. 1, 1999, pp. 1-17. doi:10.1016/S0376-7388(99)00098-8
[22] S. Han, F. C. Ferreira and A. G. Livingston, “Membrane Aromatic Recovery System (MARS)—A New Membrane Process for the Recovery of Phenols from Wastewaters,” Journal of Membrane Science, Vol. 188, No. 1-3, 2001, pp. 219-233. doi:10.1016/S0376-7388(01)00377-5
[23] K. C. Farinas, L. Doh, S. Venkatramann and R. O. Potts, “Characterization of Solute Diffusion in a Polymer Using ATR-FTIR Spectroscopy and Bulk Transport Techniques,” Macromolecules, Vol. 27, No. 18, 1994, pp. 5220-5222. doi:10.1021/ma00096a055

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.