Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites

Abstract

Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with im- proved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer na-nocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, elec-trodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.

Share and Cite:

D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik and C. Yan, "Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites," Graphene, Vol. 1 No. 2, 2012, pp. 30-49. doi: 10.4236/graphene.2012.12005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. A. Vaia and H. D. Wagner, “Framework for Nano- composites,” Materials Today, Vol. 7, No. 11, 2004, pp. 32-37. doi:10.1016/S1369-7021(04)00506-1
[2] R. Verdejo, M. M. Bernal, L. J. Romasanta and M. A. Lopez-Manchado, “Graphene Filled Polymer Nanocom- posites,” Journal of Materials Chemistry, Vol. 21, No. 10, 2011, pp. 3301-3310. doi:10.1039/c0jm02708a
[3] M. Terrones, et al., “Interphases in Graphene Polymer- Based Nanocomposites: Achievements and Challenges,” Advanced Materials, Vol. 23, No. 44, 2011, pp. 5302- 5310.
doi:10.1002/adma.201102036
[4] J. Liang, et al., “Electromagnetic Interference Shielding of Graphene/Epoxy Composites,” Carbon, Vol. 47, No. 3, 2009, pp. 922-925. doi:10.1016/j.carbon.2008.12.038
[5] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose and J. H. Lee, “Recent Advances in Graphene Based Polymer Composites,” Progress in Polymer Science, Vol. 35, No. 11, 2010, pp. 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005
[6] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Ex- perimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature, Vol. 438, No. 7065, 2005, pp. 201-204.doi:10.1038/nature04235
[7] K. P. Loh, Q. Bao, P. K. Ang and J. Yang, “The Chemis- try of Graphene,” Journal of Materials Chemistry, Vol. 20, No. 12, 2010, pp. 2277-2289. doi:10.1039/b920539j
[8] V. Singh, et al., “Graphene Based Materials: Past, Present and Future,” Progress in Materials Science, Vol. 56, No. 8, 2011, pp. 1178-1271. doi:10.1016/j.pmatsci.2011.03.003
[9] K. S. Kim, et al., “Large-Scale Pattern Growth of Gra- phene Films for Stretchable Transparent Electrodes,” Na- ture, Vol. 457, No. 7230, 2009, pp. 706-710. doi:10.1038/nature07719
[10] S. Grandthyll, et al., “Epitaxial Growth of Graphene on Transition Metal Surfaces: Chemical Vapor Deposition Versus Liquid Phase Deposition,” Journal of Physics: Condensed Matter, Vol. 24, No. 31, 2012, p. 314204. doi:10.1088/0953-8984/24/31/314204
[11] M. Gao, et al., “Epitaxial Growth and Structural Property of Graphene on Pt(111),” Applied Physics Letters, Vol. 98, No. 3, 2011, p. 033101. doi:10.1063/1.3543624
[12] J. Du and H.-M. Cheng, “The Fabrication, Properties, and Uses of Graphene/Polymer Composites,” Macromolecu- lar Chemistry and Physics, Vol. 213, No. 10-11, 2012, pp. 1060-1077. doi:10.1002/macp.201200029
[13] W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, et al., “Synthesis of Graphene and Its Applications: A Review,” Critical Reviews in Solid State and Materials Sciences, Vol. 35, No. 1, 2010, pp. 52-71. doi:10.1080/10408430903505036
[14] W. S. Hummers and R. E. Offema, “Preparation of Gra- phite Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, 1958, p.1339.
[15] D. C. Marcano, et al., “Improved Synthesis of Graphene Oxide,” ACS Nano, Vol. 4, No. 8, 2010, pp. 4806-4814. doi:10.1021/nn1006368
[16] J. Du and H.-M. Cheng, “The Fabrication, Properties, and Uses of Graphene/Polymer Composites,” Macromolecu- lar Chemistry and Physics, Vol. 213, No. 10-11, 2012, pp. 1060-1077. doi:10.1002/macp.201200029
[17] M. C. Wang, C. Yan, L. Ma and N. Hu, “Effect of De- fects on Fracture Strength of Graphene Sheets,” Compu- tational Materials Science, Vol. 54, 2012, pp. 236-239. doi:10.1016/j.commatsci.2011.10.032
[18] M. C. Wang, C. Yan and L. Ma, “Graphene Nanocompo- sites,” In: M. C. Wang, Ed., Composites and Their Prop- erties, Ning Hu, In Tech, Shanghai, 2012, pp. 17-36.
[19] W. Lu, et al., “High-Yield, Large-Scale Production of Few-Layer Graphene Flakes Within Seconds: Using Chlorosulfonic Acid and H2O2 as Exfoliating Agents,” Journal of Materials Chemistry, Vol. 22, No. 18, 2012, pp. 8775-8777. doi:10.1039/c2jm16741g
[20] X. An, et al., “Stable Aqueous Dispersions of Noncova- lently Functionalized Graphene from Graphite and Their Multifunctional High-Performance Applications,” Nano Letters, Vol. 10, No. 11, 2010, pp. 4295-4301. doi:10.1021/nl903557p
[21] S. Park and R. S. Ruoff, “Chemical Methods for the Pro- duction of Graphenes,” Nat Nano, Vol. 4, No. 4, 2009, pp. 217-224. doi:10.1038/nnano.2009.58
[22] S. Park, et al., “The Effect of Concentration of Graphene Nanoplatelets on Mechanical and Electrical Properties of Reduced Graphene Oxide Papers,” Carbon, Vol. 50, No. 12, 2012, pp. 4573-4578. doi:10.1016/j.carbon.2012.05.042
[23] T. N. Huan, T. V. Khai, Y. Kang, K. B. Shim and H. Chung, “Enhancement of Quaternary Nitrogen Doping of Graphene Oxide via Chemical Reduction Prior to Ther- mal Annealing and an Investigation of Its Electrochemi- cal Properties,” Journal of Materials Chemistry, Vol. 22, No. 29, 2012, pp. 14756-14762. doi:10.1039/c2jm31158e
[24] H.-J. Shin, et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Con- ductance,” Advanced Functional Materials, Vol. 19, No. 12, 2009, pp. 1987-1992. doi:10.1002/adfm.200900167
[25] C. Caifeng, T. Chen, H. Wang, G. Sun and X. Yang, “A Rapid, One-Step, Variable-Valence Metal Ion Assisted Reduction Method for Graphene Oxide,” Nanotechnology, Vol. 22, No. 40, 2011, pp. 405602. doi:10.1088/0957-4484/22/40/405602
[26] S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, “Direct Reduction of Graphene Oxide Films into Highly Conduc- tive and Flexible Graphene Films by Hydrohalic Acids,” Carbon, Vol. 48, No. 15, 2010, pp. 4466-4474. doi:10.1016/j.carbon.2010.08.006
[27] G. Wang, et al., “Facile Synthesis and Characterization of Graphene Nanosheets,” The Journal of Physical Chemis- try C, Vol. 112, No. 22, 2008, pp. 8192-8195. doi:10.1021/jp710931h
[28] N. Hu, et al., “Gas Sensor Based on p-Phenylenediamine Reduced Graphene Oxide,” Sensors and Actuators B: Chemical, Vol. 163, No. 1, 2012, pp. 107-114. doi:10.1016/j.snb.2012.01.016
[29] H. A. Becerril, et al., “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conduc- tors,” ACS Nano, Vol. 2, No. 3, 2008, pp. 463-470. doi:10.1021/nn700375n
[30] X. Huang, X. Qi, F. Boey and H. Zhang, “Graphene- Based Composites,” Chemical Society Reviews, Vol. 41, No. 2, 2012, pp. 666-686. doi:10.1039/c1cs15078b
[31] X. Zhao, Q. Zhang and D. Chen, “Enhanced Mechanical Properties of Graphene-Based Poly (Vinyl Alcohol) Composites,” Macromolecules, Vol. 43, No. 5, 2010, pp. 2357-2363. doi:10.1021/ma902862u
[32] L. Jiang, X. P. Shen, J. L. Wu and K. C. Shen, “Prepara- tion and Characterization of Graphene/Poly (Vinyl Alco- hol) Nanocomposites,” Journal of Applied Polymer Sci- ence, Vol. 118, No. 1, 2010, pp. 275-279. doi:10.1002/app.32278
[33] R. K. Layek, S. Samanta and A. K. Nandi, “The Physical Properties of Sulfonated Graphene/Poly (Vinyl Alcohol) Composites,” Carbon, Vol. 50, No. 3, 2012, pp. 815-827. doi:10.1016/j.carbon.2011.09.039
[34] Y. Jinhong, X. Huang, C. Wu and P. Jiang, “Permittivity, Thermal Conductivity and Thermal Stability of Poly (Vi- nylidene Fluoride)/Graphene Nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 2, 2011, pp. 478-484.
[35] Y. Chen, et al., “Preparation, Mechanical Properties and Biocompatibility of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites,” European Polymer Journal, Vol. 48, No. 6, 2012, pp. 1026-1033. doi:10.1016/j.eurpolymj.2012.03.011
[36] H. Kim, et al., “Graphene/Polyethylene Nanocomposites: Effect of Polyethylene Functionalization and Blending Methods,” Polymer, Vol. 52, No. 8, 2011, pp. 1837-1846.
doi:10.1016/j.polymer.2011.02.017
[37] H.-B. Zhang, W.-G. Zhang, Q. Yan, Z.-G. Jiang and Z.-Z. Yu, “The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethyl- methacrylate Composites,” Carbon, Vol. 50, No. 14, 2012, pp. 5117-5125. doi:10.1016/j.carbon.2012.06.052
[38] X. Li and G. B. McKenna, “Considering Viscoelastic Micromechanics for the Reinforcement of Graphene Polymer Nanocomposites,” ACS Macro Letters, Vol. 1, No. 3, 2012, pp. 388-391. doi:10.1021/mz200253x
[39] H. Kim, Y. Miura and C. W. Macosko, “Graphene/Poly- urethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity,” Chemistry of Materials, Vol. 22, No. 11, 2010, pp. 3441-3450. doi:10.1021/cm100477v
[40] P.-G. Ren, D.-X. Yan, T. Chen, B.-Q. Zeng and Z.-M. Li, “Improved Properties of Highly Oriented Graphene/ Polymer Nanocomposites,” Journal of Applied Polymer Science, Vol. 121, No. 6, 2011, pp. 3167-3174. doi:10.1002/app.33856
[41] G. Goncalves, et al., “Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler,” Journal of Materials Chemistry, Vol. 20, No. 44, 2010, pp. 9927- 9934. doi:10.1039/c0jm01674h
[42] S. Pei and H.-M. Cheng, “The Reduction of Graphene Oxide,” Carbon, Vol. 50, No. 9, 2012, pp. 3210-3228. doi:10.1016/j.carbon.2011.11.010
[43] M. Traina and A. Pegoretti, “In Situ Reduction of Gra- phene Oxide Dispersed in a Polymer Matrix", Journal of Nanoparticle Research, Vol. 14, No. 4, 2012, pp. 1-6. doi:10.1007/s11051-012-0801-0
[44] S. Ansari, A. Kelarakis, L. Estevez and E. P. Giannelis, “Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets,” Small, Vol. 6, No. 2, 2010, pp. 205-209. doi:10.1002/smll.200900765
[45] T. Wei, et al., “Preparation of Graphene Nanosheet/ Polymer Composites Using in Situ Reduction-Extractive Dispersion,” Carbon, Vol. 47, No. 9, 2009, pp. 2296- 2299.
doi:10.1016/j.carbon.2009.04.030
[46] C. Bao, et al., “Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending,” Journal of Materials Chemistry, Vol. 22, No. 13, 2012, pp. 6088-6096. doi:10.1039/c2jm16203b
[47] M. El Achaby, et al., “Preparation and Characterization of Melt-Blended Graphene Nanosheets-Poly (Vinylidene Fluoride) Nanocomposites with Enhanced Properties,” Journal of Applied Polymer Science, 2012 (Online Ver- sion) doi: 10.1002/app.38081
[48] F. Beckert, C. Friedrich, R. Thomann and R. Mu?lhaupt, “Sulfur-Functionalized Graphenes as Macro-Chain-Trans- fer and RAFT Agents for Producing Graphene Polymer Brushes and Polystyrene Nanocomposites,” Macromole- cules, Vol. 45, No. 17, 2012, pp. 7783-7090. doi:10.1021/ma301379z
[49] P. Song, et al., “Fabrication of Exfoliated Graphene- Based Polypropylene Nanocomposites with Enhanced Mechanical and Thermal Properties,” Polymer, Vol. 52, No. 18, 2011, pp. 4001-4010. doi:10.1016/j.polymer.2011.06.045
[50] M. El Achaby, et al., “Mechanical, Thermal, and Rheolo- gical Properties of Graphene-Based Polypropylene Nano- composites Prepared by Melt Mixing,” Polymer Compos- ites, Vol. 33, No. 5, 2012, pp. 733-744. doi:10.1002/pc.22198
[51] Z.-L. Mo, T.-T. Xie, J.-X. Zhang, Y.-X. Zhao and R.-B. Guo, “Synthesis and Characterization of NanoGs-PPy/ Epoxy Nanocomposites by In Situ Polymerization,” Syn- thesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 42, No. 8, 2012, pp. 1172- 1176. doi:10.1080/15533174.2012.684259
[52] I. Zaman, et al., “A Facile Approach to Chemically Modi- fied Graphene and Its Polymer Nanocomposites,” Ad- vanced Functional Materials, Vol. 22, No. 13, 2012, pp. 2735-2743. doi:10.1002/adfm.201103041
[53] S. Chatterjee, et al., “Mechanical Reinforcement and Thermal Conductivity in Expanded Graphene Nanoplate- lets Reinforced Epoxy Composites,” Chemical Physics Letters, Vol. 531, 2012, pp. 6-10. doi:10.1016/j.cplett.2012.02.006
[54] C.-C. Teng, et al., “Thermal Conductivity and Structure of Non-Covalent Functionalized Graphene/Epoxy Com- posites,” Carbon, Vol. 49, No. 15, 2011, pp. 5107-5116. doi:10.1016/j.carbon.2011.06.095
[55] J. R. Potts, et al., “Thermomechanical Properties of Chemically Modified Graphene/Poly (Methyl Methacry- late) Composites Made by in situ Polymerization,” Car- bon, Vol. 49, No. 8, 2011, pp. 2615-2623. doi:10.1016/j.carbon.2011.02.023
[56] F. Zhang, X. Peng, W. Yan, Z. Peng and Y. Shen, “Non- isothermal Crystallization Kinetics of in situ Nylon 6/Graphene Composites by Differential Scanning Calo- rimetry,” Journal of Polymer Science Part B: Polymer Physics, Vol. 49, No. 19, 2011, pp. 1381-1388. doi:10.1002/polb.22321
[57] X. Wang, et al., “In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties,” Journal of Materials Chemistry, Vol. 21, No. 12, 2011, pp. 4222-4227. doi:10.1039/c0jm03710a
[58] P. Fabbri, E. Bassoli, S. B. Bon and L. Valentini, “Prepa- ration and Characterization of Poly (Butylene Terephtha- late)/Graphene Composites by in-Situ Polymerization of Cyclic Butylene Terephthalate,” Polymer, Vol. 53, No. 4, 2012, pp. 897-902. doi:10.1016/j.polymer.2012.01.015
[59] Y. F. Huang and C. W. Lin, “Facile Synthesis and Mor- phology Control of Graphene Oxide/Polyaniline Nano- composites via in-Situ Polymerization Process,” Polymer, Vol. 53, No. 13, 2012, pp. 2574-2582. doi:10.1016/j.polymer.2012.04.022
[60] F. D. C. Fim, N. R. S. Basso, A. P. Graebin, D. S. Azam- buja and G. B. Galland, “Thermal, Electrical, and Me- chanical Properties of Polyethylene-Graphene Nanocom- posites Obtained by in situ Polymerization,” Journal of Applied Polymer Science, 2012 (Online Version). doi: 10.1002/app.38317
[61] S.-Y. Yang, et al., “Synergetic Effects of Graphene Plate- lets and Carbon Nanotubes on the Mechanical and Ther- mal Properties of Epoxy Composites,” Carbon, Vol. 49, No. 3, 2011, pp. 793-803. doi:10.1016/j.carbon.2010.10.014
[62] M. El Achaby and A. Qaiss, “Processing and Properties of Polyethylene Reinforced by Graphene Nanosheets and Carbon Nanotubes,” Materials & Design, Vol. 44, 2013, pp. 81-89. doi:10.1016/j.matdes.2012.07.065
[63] J. W. Suk, R. D. Piner, J. An and R. S. Ruoff, “Mechani- cal Properties of Monolayer Graphene Oxide,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6557-6564. doi:10.1021/nn101781v
[64] M. A. Rafiee, et al., “Fracture and Fatigue in Graphene Nanocomposites,” Small, Vol. 6, No. 2, 2010, pp. 179- 183. doi:10.1002/smll.200901480
[65] M. El Achaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essas- sil and A. Quiss, “Piezoelectric β-polymorph Formation and Properties Enhancement in Graphene Oxide—PVDF Nanocomposite Films,” Applied Surface Science, Vol. 258, No. 19, 2012, pp. 7668-7677. doi:10.1016/j.apsusc.2012.04.118
[66] A. Zandiatashbar, R. C. Picu and N. Koratkar, “Mechani- cal Behavior of Epoxy-Graphene Platelets Nanocompo- sites,” Journal of Engineering Materials and Technology, Vol. 134, No. 3, 2012, pp. 031011-031016. doi:10.1115/1.4006499
[67] I. Zaman, et al., “Epoxy/Graphene Platelets Nanocompo- sites with Two Levels of Interface Strength,” Polymer, Vol. 52, No. 7, 2011, pp. 1603-1611. doi:10.1016/j.polymer.2011.02.003
[68] M. A. Rafiee, et al., “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, Vol. 3, No. 12, 2009, pp. 3884-3890. doi:10.1021/nn9010472
[69] S. G. Miller, et al., “Characterization of Epoxy Function- alized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites,” Composites Science and Technology, Vol. 70, No. 7, 2010, pp. 1120-1125. doi:10.1016/j.compscitech.2010.02.023
[70] M. A. Rafiee, et al., “Graphene Nanoribbon Composites,” ACS Nano, Vol. 4, No. 12, 2010, pp. 7415-7420. doi:10.1021/nn102529n
[71] D. R. Bortz, E. G. Heras and I. Martin-Gullon, “Impres- sive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites,” Macromolecules, Vol. 45, No. 1, 2011, pp. 238-245. doi:10.1021/ma201563k
[72] Q. Bao, et al., “Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics,” Advanced Functional Materials, Vol. 20, No. 5, 2010, pp. 782-791. doi:10.1002/adfm.200901658
[73] X. Yang, Y. Tu, L. Li, S. Shang and X.-M. Tao, “Well-Dispersed Chitosan/Graphene Oxide Nanocompo- sites,” ACS Applied Materials & Interfaces, Vol. 2, No. 6, 2010, pp. 1707-1713. doi:10.1021/am100222m
[74] T. Ramanathan, et al., “Functionalized Graphene Sheets for Polymer Nanocomposites,” Nature Nanotechnology, Vol. 3, No. 6, 2008, pp. 327-331. doi:10.1038/nnano.2008.96
[75] D. Cai, J. Jin, K. Yusoh, R. Rafiq and M. Song, “High Performance Polyurethane/Functionalized Graphene Nano- composites with Improved Mechanical and Thermal Properties,” Composites Science and Technology, Vol. 72, No. 6, 2012, pp. 702-707. doi:10.1016/j.compscitech.2012.01.020
[76] K. Nawaz, et al., “Observation of Mechanical Percolation in Functionalized Graphene Oxide/Elastomer Compos- ites,” Carbon, Vol. 50, No. 12, 2012, pp. 4489-4494. doi:10.1016/j.carbon.2012.05.029
[77] T. Kuila, et al., “Preparation of Functionalized Gra- phene/Linear Low Density Polyethylene Composites by a Solution Mixing Method,” Carbon, Vol. 49, No. 3, 2011, pp. 1033-1037. doi:10.1016/j.carbon.2010.10.031
[78] J. Wang, et al., “Direct Synthesis of Hydrophobic Gra- phene-Based Nanosheets via Chemical Modification of Exfoliated Graphene Oxide,” Journal of Nanoscience and Nanotechnology, Vol. 12, No. 8, 2012, pp. 6460-6466. doi:10.1166/jnn.2012.5433
[79] W. Li, et al., “Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites,” Carbon, Vol. 49, No. 14, 2011, pp. 4724-4730. doi:10.1016/j.carbon.2011.06.077
[80] X. Huang, et al., “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small, Vol. 7, No. 14, 2011, pp. 1876-1902. doi:10.1002/smll.201002009
[81] C. Lv, Q. Xue, D. Xia and M. Ma, “Effect of Chemisorp- tion Structure on the Interfacial Bonding Characteristics of Graphene-Polymer Composites,” Applied Surface Sci- ence, Vol. 258, No. 6, 2012, pp. 2077-2082. doi:10.1016/j.apsusc.2011.04.056
[82] W. Zhang, I. Srivastava, Y.-F. Zhu, C. R. Picu and N. A. Koratkar, “Heterogeneity in Epoxy Nanocomposites Ini- tiates Crazing: Significant Improvements in Fatigue Re- sistance and Toughening,” Small, Vol. 5, No. 12, 2009, pp. 1403-1407. doi:10.1002/smll.200801910
[83] K. H. Kim, Y. Oh and M. F. Islam, “Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Re- sistant to Fatigue,” Nature Nanotechnology, Vol. 7, No. 9, 2012, pp. 562-566. doi:10.1038/nnano.2012.118
[84] A. Zandiatashbar, C. R. Picu and N. Koratkar, “Control of Epoxy Creep Using Graphene,” Small, Vol. 8, No. 11, 2012, pp. 1676-1682. doi:10.1002/smll.201102686
[85] X. Jiang and L. T. Drzal, “Multifunctional High Density Polyethylene Nanocomposites Produced by Incorporation of Exfoliated Graphite Nanoplatelets 1: Morphology and Mechanical Properties,” Polymer Composites, Vol. 31, No. 6, 2010, pp. 1091-1098. doi: 10.1002/pc.20896
[86] J. R. Potts, D. R. Dreyer, C. W. Bielawski and R. S. Ruoff, “Graphene-Based Polymer Nanocomposites,” Polymer, Vol. 52, No. 1, 2011, pp. 5-25. doi:10.1016/j.polymer.2010.11.042
[87] Y. Shen, et al., “Chemical and Thermal Reduction of Graphene Oxide and Its Electrically Conductive Polylac- tic Acid Nanocomposites,” Composites Science and Tech- nology, Vol. 72, No. 12, 2012, pp. 1430-1435. doi:10.1016/j.compscitech.2012.05.018
[88] V. H. Pham, T. T. Dang, S. H. Hur, E. J. Kim and J. S. Chung, “Highly Conductive Poly (Methyl Methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction,” ACS Applied Materials & Interfaces, Vol. 4, No. 5, 2012, pp. 2630-2636. doi:10.1021/am300297j
[89] Y.-K. Yang, et al., “Non-Covalently Modified Graphene Sheets by Imidazolium Ionic Liquids for Multifunctional Polymer Nanocomposites,” Journal of Materials Chemis- try, Vol. 22, No. 12, 2012, pp. 5666-5675. doi:10.1039/c2jm16006d
[90] H. Tang, G. J. Ehlert, Y. Lin and H. A. Sodano, “Highly Efficient Synthesis of Graphene Nanocomposites,” Nano Letters, Vol. 12, No. 1, 2011, pp. 84-90. doi:10.1021/nl203023k
[91] C. Harish, et al., “Synthesis of Polyaniline/Graphene Nanocomposites and Its Optical, Electrical and Electro- chemical Properties,” Advanced Science, Engineering and Medicine, Vol. 5, No. 2, 2013, pp. 140-148. doi:10.1166/asem.2013.1237
[92] Z. Wang, J. K. Nelson, H. Hillborg, S. Zhao and L. S. Schadler, “Graphene Oxide Filled Nanocomposite with Novel Electrical and Dielectric Properties,” Advanced Materials, Vol. 24, No. 23, 2012, pp. 3134-3137. doi:10.1002/adma.201200827
[93] I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, “Tun- able Electrical Conductivity of Individual Graphene Ox- ide Sheets Reduced at ‘Low’ Temperatures,” Nano Let- ters, Vol. 8, No. 12, 2008, pp. 4283-4287. doi:10.1021/nl8019938
[94] S. Ansari and E. P. Giannelis, “Functionalized Graphene Sheet—Poly (Vinylidene Fluoride) Conductive Nanocomposites,” Journal of Polymer Science: Part B: Poly- mer Physics, Vol. 47, No. 9, 2009, pp. 888-897. doi:10.1002/polb.21695
[95] J. Li, M. L. Sham, J.-K. Kim and G. Marom, “Morphol- ogy and Properties of UV/Ozone Treated Graphite Nano- platelet/Epoxy Nanocomposites,” Composites Science and Technology, Vol. 67, No. 2, 2007, pp. 296-305. doi:10.1016/j.compscitech.2006.08.009
[96] S. Ganguli, A. K. Roy and D. P. Anderson, “Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites,” Carbon, Vol. 46, No. 5, 2008, pp. 806-817. doi:10.1016/j.carbon.2008.02.008
[97] S. Heo, et al., “Improved Thermal Properties of Graphene Oxide-Incorporated Poly (Methyl Methacrylate) Micro- spheres,” Journal of Nanoscience and Nanotechnology, Vol. 12, No. 7, 2012, pp. 5990-5994. doi:10.1166/jnn.2012.6344
[98] J. A. King, et al., “Characterization of Exfoliated Graph- ite Nanoplatelets/Polycarbonate Composites: Electrical and Thermal Conductivity, and Tensile, Flexural, and Rheological Properties,” Journal of Composite Materials, Vol. 46, No. 9, 2012, pp. 1029-1039. doi:10.1177/0021998311414073
[99] K. M. F. Shahil and A. A. Balandin, “Graphene-Multi- layer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials,” Nano Letters, Vol. 12, No. 2, 2012, pp. 861-867. doi:10.1021/nl203906r
[100] K. M. F. Shahil and A. A. Balandin, “Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials,” Solid State Communica- tions, Vol. 152, No. 15, 2012, pp. 1331-1340. doi:10.1016/j.ssc.2012.04.034
[101] A. Yu, et al., “Enhanced Thermal Conductivity in a Hy- brid Graphite Nanoplatelet—Carbon Nanotube Filler for Epoxy Composites,” Advanced Materials, Vol. 20, No. 24, 2008, pp. 4740-4744. doi:10.1002/adma.200800401
[102] D. Yan, et al., “Enhanced Mechanical and Thermal Prop- erties of Rigid Polyurethane Foam Composites Contain- ing Graphene Nanosheets and Carbon Nanotubes,” Poly- mer International, Vol. 61, No. 7, 2012, pp. 1107-1114. doi:10.1002/pi.4188
[103] R. Verdejo, F. B. Bujans, M. A. R. Perez, J. A. D. Saja and M. A. L. Manchado, “Functionalized Graphene Sheet Filled Silicone Foam Nanocomposites,” Journal of Mate- rials Chemistry, Vol. 18, No. 19, 2008, pp. 2221-2226. doi:10.1039/b718289a
[104] S. Vadukumpully, J. Paul, N. Mahanta and S. Vali- yaveetti, “Flexible Conductive Graphene/Poly (Vinyl Chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability,” Carbon, Vol. 49, No. 1, 2011, pp. 198-205. doi:10.1016/j.carbon.2010.09.004
[105] C. Bao, et al., “In Situ Preparation of Functionalized Gra- phene Oxide/Epoxy Nanocomposites with Effective Re- inforcements,” Journal of Materials Chemistry, Vol. 21, No. 35, 2011, pp. 13290-13298. doi:10.1039/c1jm11434d
[106] Y. Zhan, et al., “Cross-Linkable Nitrile Functionalized Graphene Oxide/Poly (Arylene Ether Nitrile) Nanocom- posite Films with High Mechanical Strength and Thermal Stability,” Journal of Materials Chemistry, Vol. 22, No. 12, 2012, pp. 5602-5608. doi:10.1039/c2jm15780b
[107] M. Stürzel, et al., “Novel Graphene UHMWPE Nano- composites Prepared by Polymerization Filling Using Single-Site Catalysts Supported on Functionalized Gra- phene Nanosheet Dispersions,” Macromolecules, Vol. 45, No. 17, 2012, pp. 6878-6887. doi:10.1021/ma301376q
[108] A. S. Wajid, et al., “High-Performance Pristine Graphene/ Epoxy Composites with Enhanced Mechanical and Elec- trical Properties,” Macromolecular Materials and Engi- neering, 2012 (Online Version). doi: 10.1002/mame.201200043
[109] X. Jiang and L. T. Drzal, “Multifunctional High-Density Polyethylene Nanocomposites Produced by Incorporation of Exfoliated Graphene Nanoplatelets 2: Crystallization, Thermal and Electrical Properties,” Polymer Composites, Vol. 33, No. 4, 2012, pp. 636-642. doi: 10.1002/pc.22187
[110] G. Gedler, M. Antunes, V. Realinho and J. I. Velasco, “Thermal Stability of Polycarbonate-Graphene Nanocomposite Foams,” Polymer Degradation and Stability, Vol. 97, No. 8, 2012, pp. 1297-1304. doi:10.1016/j.polymdegradstab.2012.05.027
[111] A. S. Patole, et al., “A Facile Approach to the Fabrication of Graphene/Polystyrene Nanocomposite by in Situ Mi- croemulsion Polymerization,” Journal of Colloid and In- terface Science, Vol. 350, No. 2, 2010, pp. 530-537. doi:10.1016/j.jcis.2010.01.035
[112] A. L. Higginbotham, J. R. Lomeda, A. B. Morgan and J. M. Tour, “Graphite Oxide Flame-Retardant Polymer Nanocomposites,” ACS Applied Materials & Interfaces, Vol. 1, No. 10, 2009, pp. 2256-2261. doi:10.1021/am900419m
[113] S. Wang, M. Tambraparni, J. Qiu, J. Tipton and D. Dean, “Thermal Expansion of Graphene Composites,” Macro- molecules, Vol. 42, No. 14, 2009, pp 5251-5255. doi:10.1021/ma900631c
[114] O. C. Compton, S. Kim, C. Pierre, J. M. Torkelson and S. T. Yguyen, “Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers,” Advanced Materi- als, Vol. 22, No. 42, 2010, pp. 4759-4763. doi:10.1002/adma.201000960
[115] H. Wu and L. T. Drzal, “Graphene Nanoplatelet Paper as a Light-Weight Composite with Excellent Electrical and Thermal Conductivity and Good Gas Barrier Properties,” Carbon, Vol. 50, No. 3, 2012, pp. 1135-1145. doi:10.1016/j.carbon.2011.10.026
[116] C.-H. Chang, et al., “Novel Anticorrosion Coatings Pre- pared from Polyaniline/Graphene Composites,” Carbon, Vol. 50, No. 14, 2012, pp. 5044-5051. doi:10.1016/j.carbon.2012.06.043
[117] P. Song, et al., “Permeability, Viscoelasticity, and Flam- mability Performances and Their Relationship to Polymer Nanocomposites,” Industrial & Engineering Chemistry Research, Vol. 51, No. 21, 2012, pp. 7255-7263. doi:10.1021/ie300311a
[118] A. M. Pinto, J. Cabral, D. A. P. Tanaka, A. M. Mendes and F. D. Magalhaes, “Effect of Incorporation of Gra- phene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly (Lactic Acid) Films,” Polymer International, 2012 (Online Version). doi:10.1002/pi.4290
[119] C. Li, et al., “Graphene Nano-‘Patches’ on a Carbon Nanotube Network for Highly Transparent/Conductive Thin Film Applications,” The Journal of Physical Chem- istry C, Vol. 114, No. 33, 2010, pp. 14008-14012. doi:10.1021/jp1041487
[120] A. S. Patole, et al., “Self Assembled Graphene/Carbon Nanotube/Polystyrene Hybrid Nanocomposite by in Situ Microemulsion Polymerization,” European Polymer Journal, Vol. 48, No. 2, 2012, pp. 252-259. doi:10.1016/j.eurpolymj.2011.11.005
[121] C. Zhang and T. Liu, “A Review on Hybridization Modi- fication of Graphene and Its Polymer Nanocomposites,” Chinese Science Bulletin, Vol. 57, No. 23, 2012, pp. 3010-3021. doi:10.1007/s11434-012-5321-x
[122] S. S. J. Aravind, V. Eswaraiah and S. Ramaprabhu, “Fac- ile Synthesis of One Dimensional Graphene Wrapped Carbon Nanotube Composites by Chemical Vapour Deposition,” Journal of Materials Chemistry, Vol. 21, No. 39, 2011, pp. 15179-15182. doi:10.1039/c1jm12731d
[123] M. K. Shin, et al., “Synergistic Toughening of Composite Fibres by Self-Alignment of Reduced Graphene Oxide and Carbon Nanotubes,” Nature Communications, Vol. 3, 2012, p. 650. doi:10.1038/ncomms1661
[124] R. Wang, J. Sun, L. Gao, C. Xu and J. Zhang, “Fibrous Nanocomposites of Carbon Nanotubes and Graphene- Oxide with Synergetic Mechanical and Actuative Per- formance,” Chemical Communications, Vol. 47, No. 30, 2011, pp. 8650-8652. doi:10.1039/c1cc11488c
[125] S. Chatterjee, et al., “Size and Synergy Effects of Nano- filler Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites,” Carbon, Vol. 50, No. 15, 2012, pp. 5380- 5386. doi:10.1016/j.carbon.2012.07.021
[126] S. Kumar, et al., “Dynamic Synergy of Graphitic Nano- platelets and Multi-Walled Carbon Nanotubes in Poly- etherimide Nanocomposites,” Nanotechnology, Vol. 21, 2010, pp. 105701-105709. doi:10.1088/0957-4484/21/10/105702
[127] J. Yan, et al., “Preparation of Graphene Nanosheet/Car- bon Nanotube/Polyaniline Composite as Electrode Mate- rial for Supercapacitors,” Journal of Power Sources, Vol. 195, No. 9, 2010, pp. 3041-3045. doi:10.1016/j.jpowsour.2009.11.028
[128] Y. Li, T. Yang, T. Yu, L. Zheng and K. Liao, “Synergis- tic Effect of Hybrid Carbon Nantube-Graphene Oxide as a Nanofiller in Enhancing the Mechanical Properties of PVA Composites,” Journal of Materials Chemistry, Vol. 21, No.29, 2011, pp. 10844-10851. doi:10.1039/c1jm11359c
[129] C. Zhang, S. Huang, W. W. Tjiu, W. Fan and T. Liu, “Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Acid Treated Multi-Walled Carbon Nanotubes and Their Poly (Vinyl Alcohol) Composites,” Journal of Materials Chemistry, Vol. 22, No. 6, 2012, pp. 2427-2434. doi:10.1039/C1JM13921E

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.