Share This Article:

U-Pb Zircon Age, Geochemical and Sr-Nd Isotopic Constraints on the Age and Origin of the Granodiorites in Guilong, Southeastern Yunnan Province, Southern China

Full-Text HTML Download Download as PDF (Size:3265KB) PP. 229-240
DOI: 10.4236/ojg.2012.24023    3,074 Downloads   6,040 Views   Citations

ABSTRACT

Post-collision felsic rocks in Southeastern Yunnan province contain granodiorites. U-Pb zircon ages, geochemical data and Sr-Nd isotopic data for these rocks are reported in the present paper. Laser ablation inductively coupled plasma mass spectrometry U-Pb zircon analyses yielded consistent age 252.5 ± 1.0 Ma for one sample of the felsic rocks. The granodiorites were characterized by variational and high (87Sr/86Sr)i, ranging from 0.7223 to 0.7236 and very low εNd (t) values from –29.1 to –30.4. In addition, these rocks are characterized by slight Eu negative anomalies, Nb, Ta, Ti and Sr negative anomalies on primitive mantle normalization spider. Geochemical and isotopic characteristics suggest that these rocks were derived from an enriched crust source. The granodiorites resulted from the fractionation of potassium feldspar, plagioclase and ilmenite or rutile. However, the granodiorites were unaffected by visible crustal contamination during ascent. As a result, the granodiorites may have been formed due to partial melting of crust-derived sedimentary rocks beneath southeastern Yunnan province, southern China.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Liu, S. , Hu, R. , Feng, C. , Gao, S. , Feng, G. , Qi, Y. , Wang, T. , M. Coulson, I. , Yang, Y. and Yang, C. (2012) U-Pb Zircon Age, Geochemical and Sr-Nd Isotopic Constraints on the Age and Origin of the Granodiorites in Guilong, Southeastern Yunnan Province, Southern China. Open Journal of Geology, 2, 229-240. doi: 10.4236/ojg.2012.24023.

References

[1] Southwest Geological Exploration Corporation, “Geology of Tin Deposits in Gejiu,” Metallurgical Industry Publishing House, Beijing, 1984.
[2] J. Chen, C. Hall and C. J. Stanley, “Tin-Bearing Skarns of South China: Geological Setting and Mineralogy,” Ore Geology Reviews, Vol. 7, No. 3, 1992, pp. 225-248. doi:10.1016/0169-1368(92)90006-7
[3] Y. Q. Zhuang, R. Z. Wang and J. M. Yin, “Geology of the Gejiu Tin-Copper Olymetallic Deposit,” Geological Publishing House, Beijing, 1996.
[4] Z. W. Jiang, N. H. S. Oliver, T. D. Barr W. L. Power and A. Ord, “Numerical Modeling of Fault-Controlled Fluid Flow in the Genesis of the Deposits of the Malage Ore District, Gejiu Mining District, China,” Economic Geology, Vol. 92, No. 2. 1997, pp. 228-247. doi:10.2113/gsecongeo.92.2.228
[5] G. P. Mo, “Genetic Type of Granites in Gejiu Super Large Tin Polymetallic Deposit,” Mineral Resources and Geology, Vol. 20, No. 45, 2006, pp. 413-417.
[6] Y. B Cheng and J. W Mao, “Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting,” Lithos, Vol. 120, No. 3-4, 2010, pp 258-276. doi:10.1016/j.lithos.2010.08.013
[7] The Second Geological Team of Yunnan Geological and Mineral Urea, “The Report of Prospecting at the Region of Bainiuchang in Mengzi County, Yunnan Province,” Yunnan Ecological and Mineral Bureau (in Chinese), Mengzi County, 1990.
[8] Z. Y. Gao, “On the Genesis of the Bainiuchang Silver-Polymetallic Deposit in Mengzi,” Yunnan Geology, Vol. 15, No. 4, 1996, pp. 91-102.
[9] X. M. Chen, Z. Lin and F. H. Xie, “Geological and Geochemical Characteristics of the Bainiuehang Super Large Silver Polymetallic Deposit of Supreme Posed Mineralization, Yunnan Province,” Scientia Geologica Sinica, Vol. 33, No. 1, 1998, pp. 115-123.
[10] X. B. Li, J. S. Liu, H. P. Zhang and G. Ma, “The Analysis to Ore-Controlling Factors of the Bainiuehang Ag Polymetallic Deposit of Mengzi County in Yunnan Province,” Contribution to Geology and Mineral Resources Research, Vol. 20, No. 2, 2005, pp.111-114.
[11] H. J. Xie, C. H. Zhu, Q. Zhang, Q. Wang and L. W. Fan, “Sulfur Isotopic Composition of the Bainiuchang Super Large Ag Polymetallic Deposit, Yunnan Province, China: Implications for the Source of Sulfur in Ore Forming Fluids,” Chinese Journal of Geochemistry, Vol. 28, No. 3, 2009, pp. 284-292. doi:10.1007/s11631-009-0284-6
[12] L. Ye, N. J. Cook, C. L. Ciobanu, Y. P. Liu, Q. Zhang, T. G. Liu, W. Gao, Y. L. Yang and L. Danyushevskiy, “Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A La-Icpms Study,” Ore Geology Reviews, Vol. 39, No. 4, 2011, pp. 188-217. doi:10.1016/j.oregeorev.2011.03.001
[13] C. H. Zhu, Q. Zhang, S. X. Shao and D. P. Wang, “Origin of Bainiuchang Liver-Polymetallic Deposit in Yunnan, China,” Global Geology, Vol. 25, No. 4, 2006, pp. 353-359.
[14] C. H. Zhu, Q. Zhang, S. X. Shao, X. Q. Zhu and D. Q. Wang, “ Lead Isotopic Composition and Lead Source in the Bainiuchang Ag-Polymetallic Deposit, Yunnan Province, China,” Acta Geologica Sinica, Vol. 82, No. 5, 2008, pp. 845-857.
[15] H. L. Yuan, S. Gao, X. M. Liu, H. M. Li, D. Gunther and F. Y. Wu, “Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry,” Geostandards Newsletter, Vol. 28, No. 3, 2004, pp. 353-370. doi:10.1111/j.1751-908X.2004.tb00755.x
[16] T. Andersen, “Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb,” Chemical Geology, Vol. 192, No. 1-2, 2002, pp. 59-79. doi:10.1016/S0009-2541(02)00195-X
[17] K. R. Ludwig, “User’s Manual for Isoplot/Ex, Version 3.00. A Geochronological Toolkit for Microsoft Excel,” Berkeley Geochronology Center Special Publication, Vol. 4, No. 2, 2003, pp. 1-70.
[18] L. Qi, J. Hu and D. C. Grégoire, “Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry,” Talanta, Vol. 51, No. 6, 2000, pp. 507-513.
[19] H. E. Huppert and R. S. J. Sparks, “The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust,” Journal of the Petrology, Vol. 29, No. 3, 1998, pp. 599-624.
[20] C. Annen, R. S. J. Sparks, “Effects of Repetitive Emplacement of Basaltic Intrusions on Thermal Evolution and Melt Generation in the Crust,” Earth Planetary Science Letters, Vol. 203, No. 3-7, 2002, pp. 937-955.
[21] F. Y. Wu, X. H. Li and J. H. Yang, “Discussions on the Petrogenesis of Granites,” Acta Petrologica Sinica, Vol. 23, No. 6, 2007, pp. 1217-1238.
[22] H. F. Ling, W. Z. Shen and P. Deng, “Age, Geochemistry and Petrogenesis of the Sundong Granite, Northern Guangdong Province,” Acta Petrologica Sinica, Vol. 20, No. 3, 2004, pp. 413-424.
[23] J. H. Yu, X. M. Zhou and L. Zhao, “Mantle-Crust Interaction Generating the Wuping Granites: Evidence from Sr-Nd-Hf-U-Pb Isotopes,” Acta Petrologica Sinica, Vol. 21, No. 3, 2005, pp. 651-664.
[24] J. S. Qiu, J. Hu and B. I. A. McInnes, “Geochronology, Geochemistry and Petrogenesis of the Longwo Granodioritic Pluton in Guangdong Province,” Acta Petrologica Sinica, Vol. 20, No. 6, 2004, pp. 1363-1374.
[25] S. Y. Jiang, L. Li, B. Zhu, X. Ding, Y. H. Jiang, L. X. Gu and P. Ni, “Geochemical and Sr-Nd-Hf Isotopic Compositions of Granodiorite from the Wushan Copper Deposit, Jiangxi Province and Their Implications for Petrogenesis,” Acta Petrologica Sinica, Vol. 24, No. 8, 2008, pp. 1679-1690.
[26] D. J. DePaolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractionation Crystallization,” Earth and Planetary Science Letters, Vol.53, No. 2, 1981, pp 189-202. doi:10.1016/0012-821X(81)90153-9
[27] C. W. Devey and K. G. Cox, “Relationships between Crustal Contamination and Crystallization in Continental Flood Basalt Magmas with Special Reference to the Deccan Traps of the Western Ghats, India,” Earth and Planetary Science Letters, Vol. 84, No. 1, 1987, pp 59-68. doi:10.1016/0012-821X(87)90176-2
[28] J. S. Marsh, “Geochemical Constraints on Coupled Assimilation and Fractional Crystallization Involving Upper Crustal Compositions and Continental Tholeiitic Magma,” Earth Planetary Science Letter, Vol. 92, No. 1, 1989, pp. 78-80. doi:10.1016/0012-821X(89)90021-6
[29] B. Mingram, R. B. Trumbull, S. Littman and H. Gertenberger, “A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia: Evidence for Mixing of Crust and Mantle-Derived Components,” Lithos, Vol. 54, No. 1-2, 2000, pp. 1-22. doi:10.1016/S0024-4937(00)00033-5
[30] P. J. Sylvester, “Post-Collisional Strongly Peraluminous Granites,” Lithos, Vol. 45, No. 1-4, 1998, pp. 29-34. doi:10.1016/S0024-4937(98)00024-3
[31] Q. Zhang, Y. Wang and C. D. Li, “Granite Classification on the Basis of Sr and Yb Contents and Its Implications,” Acta Petrologica Sinica, Vol. 22, No. 9, 2006, pp. 2249-2269.
[32] X. H. Li, Z. X. Li, W. X. Li, Y. Liu, C Yuan, G. J. Wei and C. S. Qi, “U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab,” Lithos, Vol. 96, No. 2, 2007, pp. 186-204. doi:10.1016/j.lithos.2006.09.018
[33] E. B. Watson and T. M. Harrison, “Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types,” Earth and Planetary Science Letters, Vol. 64, No. 2, 1983, pp. 295-304. doi:10.1016/0012-821X(83)90211-X
[34] E. A. K Middlemost, “Naming Materials in the Magma/ Igneous Rock System,” Earth-Science Reviews, Vol. 37, No. 3-4, 1994, pp. 215-224. doi:10.1016/0012-8252(94)90029-9
[35] R. W. Le Maitre, “Igneous Rocks: A Classification and Glossary of Terms,” 2nd Edition, Cambridge University Press, Ambridge, 2002.
[36] E. A. K. Middlemost, “A Simple Classification of Volcanic Rocks,” Bulletin of Volcanology, Vol. 36, No. 2, 1972, pp. 382-397. doi:10.1007/BF02596878
[37] S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Magmatism in the Ocean Basins,” In: A. D. Saunders and M. J. Norry, Eds., Geological Society Special Publication, London, 1989, pp. 313-345.
[38] Y. M. Wang, Y. S. Gao, H. M. Han and X. H. Wang, “Practical Handbook of Reference Materials for Geoanalysis,” Geological Publishing House, Beijing, 2003.
[39] M. Thompson, P. J. Potts, J. S. Kane and S. Wilson, “An International Proficiency Test for Analytical Geochemistry Laboratories-Report on Round 5 (August 1999),” Geostandards and Geoanalytical Research, Vol. 24, No. 1, 2000, pp. E1-E28.
[40] P. J. Potts and J. S. Kane, “International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate),” Geostandards and Geoanalytical Research, Vol. 29, No. 2, 2005, pp. 233-236. doi:10.1111/j.1751-908X.2005.tb00895.x
[41] R. H. Steiger and E. J?ger, “Subcommission on Geochronology; Convention on the Use of Decay Constants in Geochronology and Cosmochronology,” Earth and Planetary Science Letters, Vol. 36, No. 3, 1977, pp. 359-362.
[42] G. W. Lugmair and K. Harti, “Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle,” Earth and Planetary Science Letters, Vol. 39, No. 3, 1978, pp. 349-357. doi:10.1016/0012-821X(78)90021-3

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.