Magnetic Properties of Y3-2xCa2xFe5-xVxO12 Garnets

Abstract

A comprehensive study of the magnetic properties of Y3-2xCa2xFe5-xVxO12 (0 ≤ x ≤ 1) has been performed. The garnet ferrites samples were prepared by the ceramic technique, and X-ray diffraction analysis indicates the formation of single cubic phase. Vibrating sample magnetometry (VSM) and a superconducting quantum-interference device (SQUID) were used to measure the magnetic properties, especially the magnetization and thermo-magnetic behavior. The magnetization curves exhibit the typical characteristics of ferrimagnetic materials at both 4.2 K and at room temperature. The samples have a low coercivities (between 20 and 40 Oe) and saturation magnetizations as high as 36 emu/g at 4.2 K. The saturation magnetization decreases with V and Ca contents, reaching about 8 emu/g at 4.2 K (x = 1). For all samples, the saturation magnetization decreases with increasing temperature, whereas the Curie temperature increases for small values of x, from 557 K for x = 0 to a maximum of 590 K for x = 0.2. For larger values of x, it decreases and reaches 525 K for x = 1.0. The basic experimental trends reflect the occupancy of the tetrahedral 24d sites by vanadium in combination with the predominant intersublattice exchange constant Jad, although the nonzero magnetization at x = 1.0 indicates that about 10% of the substituted V atoms goes onto the octahedral 16a sites.

Share and Cite:

I. Al-Omari, R. Skomski and D. Sellmyer, "Magnetic Properties of Y3-2xCa2xFe5-xVxO12 Garnets," Advances in Materials Physics and Chemistry, Vol. 2 No. 3, 2012, pp. 116-120. doi: 10.4236/ampc.2012.23019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R.L. Streever, Anisotropic exchange in ErIG, J. Magn. Magn. Mater. 278 (2004) 223–230. doi:10.1016/j.jmmm.2003.12.1231
[2] N.I. Tsidaeva, J. Alloys Compd. 374 (2004) 160–164. doi:10.1016/j.jallcom.2003.11.143
[3] Y. Nakata, T. Okada, M. Maeda, S. Higuchi, K. Ueda, Opt. Laser Eng. 44 (2) (2006) 147–154. doi:10.1016/j.optlaseng.2005.03.003
[4] M. Laulajainen, P. Paturi, J. Raittila, H. Huhtinen, A.B. Abrahamsen, N.H. An-dersen, R. Laiho, J. Magn. Magn. Mater. 279 (2–3) (2004) 218–223. doi:10.1016/j.jmmm.2004.01.081
[5] A.S. Lagutin, G.E. Fedorov, J.Vanacken, F. Herlach, J. Magn. Magn. Mater. 195 (1999) 97–106. doi:10.1016/S0304-8853(98)01040-3
[6] S.A. Nikitov, J. Magn. Magn. Mater. 196–197 (1999) 400–403. doi:10.1016/S0304-8853(98)00776-8
[7] C.S. Tsai, J. Magn. Magn. Mater. 209 (1–3) (2000) 10–14. doi:10.1016/S0304-8853(99)00634-4
[8] D. Cruickshank, J. Eur. Ceram. Soc. 23 (2003) 2721–2726. doi:10.1016/S0955-2219(03)00145-6
[9] Sandra da Silva Marins, Tsuneharu Ogasawara, Ang’elica Soares Ogasawara, J. Alloys Compd. 436 (2007) 415-420. doi:10.1016/j.jallcom.2006.11.114
[10] Zhongjun Cheng and Hua Yang, Physica E 39 (2007) 198-202. doi:10.1016/j.physe.2007.04.003
[11] R.D. Sanchez, C.A. Ramos, J. Rivas, P. Vaqueiro, M.A. Lopez-Quintela, Physica B 354 (2004) 104-107. doi:10.1016/j.physb.2004.09.028
[12] U. Kobler and A. Hoser, Solid Stat. Comm. 142 (2007) 350-354. doi:10.1016/j.ssc.2007.02.041
[13] Haitao Xu and Hua Yang, Matter. Manuf. Proc. 23 (2008) 1-4. doi:10.1080/10426910701524212
[14] Zulkiffly Abbas, Ram-adan M. Al-habashi, Kaida Khalid, Mohd. Maarof, Europ. J. Scient. Research 36 No. 2 (2009) 154-160.
[15] S. Hosseini Vajargah, H.R. Madaah Hosseini, Z.A. Nemati, J. Alloys Compd. 430 (2007) 339-343. doi:10.1016/j.jallcom.2006.05.023
[16] Zhongjun Cheng, Hua Yang, Lianxiang Yu, Yuming Cui, Shouhua Feng, J. Magn. Magn. Mater. 302 (2006) 259-262. doi:10.1016/j.jmmm.2005.09.015
[17] Haitao Xu, Hua Yang, Wei Xu, Lianxiang Yu, Curr. Appl. Phys. 8 (2008) 1-5. doi:10.1016/j.cap.2007.04.002
[18] J. Wojtowicz, "High Temperature Susceptibility of Garnets: Exchange Interactions in YIG and LuIG", J. Appl. Phys. 33 (1962) 1257-1258. doi:10.1063/1.1728680
[19] Chul Sung Kim, Byoung Ki Min, Sam Jin Kim, Sung Ro Yoon, Young Rang Uhm, J. Magn. Magn. Mater. 254-255 (2003) 553-555. doi:10.1016/S0304-8853(02)00864-8
[20] J. E. Evetts (Ed.), Concise Encyclopedia of Magnetic and Superconducting Mate-rials, Pergamon Press, Oxford 1992.
[21] Chul Sung Kim, Young Rang Uhm, Sung Baek Kim, Jae-Gwang Lee, J. Magn. Magn. Mater. 215-216 (2000) 551-553. doi:10.1016/S0304-8853(00)00217-1
[22] S.R. Nimbore, D.R. Shengule, S.J. Shukla, G.K. Bichile, K.M. Jadhav, J. Mater. Sci. 41 (2006) 6460-6464 doi:10.1007/s10853-006-0365-4
[23] U. K?bler, A. Hoser, Sol. Stat. Comm. 142 (2007) 350-354. doi:10.1016/j.ssc.2007.02.041
[24] G. Mumcu, K. Sertel, J.L. Volakis, A. Figotin and I. Vitebsky, IEEE Antenna Propagat. Soc. Symp., 2 (2004) 1395-98. doi:10.1109/APS.2004.1330447
[25] T.Shinohara, S. Takeda, Y. Matsumoto, Y. Noro, IEEE Trans. Magn. 11 (1975) 1676. doi:10.1109/TMAG.1975.1058966
[26] R. Skomski, Simple Models of Magnetism, University Press, Oxford 2008. doi:10.1093/acprof:oso/9780198570752.001.0001
[27] V. M. Yudin, S. A. Poltinnikov, O. B. Proskuryakov and N. N. Parfenova, Phys. Lett. A 28, 483-484 (1969). doi:10.1016/0375-9601(69)90639-2
[28] R. Skomski, J. Appl. Phys. 83 (1998) 6724-6726. doi:10.1063/1.367827
[29] J. S. Smart, Effective field theories of magnetism, Saunders, Philadephia 1966.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.