Electron Emission of Graphene-Diamond Hybrid Films Using Paraffin Wax as Diamond Seeding Source

Abstract

We present a scalable, reproducible and economic process for the fabrication of diamond and diamond-graphene hybrid films using paraffin wax as a seeding source for diamond. The films were characterized using Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Raman spectra show the characteristic band of diamond at 1332 cm-1 and the D, G, and 2D bands of graphene at 1360, 1582 and 2709 cm-1, respectively. Electron microscopy confirms the microcrystalline nature of the diamond films with crystal size in the range of 0.5 μm to 1.0 μm, and the hybrid film consists of microcrystalline diamond attached to thin, semi-transparent graphene flakes. The graphene-diamond hybrid films exhibit a turn-on field of about 3.6 V/μm with a prolonged current stability of at least 135 h.

Share and Cite:

D. Varshney, C. Rao, F. Mendoza, K. Perez, M. Guinel, Y. Ishikawa, B. Weiner and G. Morell, "Electron Emission of Graphene-Diamond Hybrid Films Using Paraffin Wax as Diamond Seeding Source," World Journal of Nano Science and Engineering, Vol. 2 No. 3, 2012, pp. 126-133. doi: 10.4236/wjnse.2012.23016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Baba, Y. Aikawa, N. Shohata, H. Yoneda and K. I. Ueda, “Phot°Conductive Switch with CVD Diamond Films by Ultraviolet Light Pulse.” NEC Research Development Vol. 36 No. 3, 1995, pp. 369-375. doi:10.1016/0925-9635(95)00448-3
[2] L. S. Pan and D. R. Kania (Eds.), “Diamond: electronic properties and applications:Kluwer Academic Publishers.” Kluwer Academic Publishers, Boston, 1995.
[3] D. A. David, R. Epstein and R. Hanson, “The diamond age of Spintronics” Sci. Amer. Vol. 297 No. 4, 2007, pp. 84-91. doi:10.1038/scientificamerican1007-84
[4] B. R. Stoner, G. H. M. Ma, S. D. Wolter and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy.” Phys. Rev. B, Vol. 45 No. 19, 1992, pp. 11067-84. doi:10.1103/PhysRevB.45.11067
[5] K. Uppireddi, O. Resto, B. R. Weiner and G. Morell, Iron oxide nanoparticles employed as seeds for the induction of micr°Crystalline diamond synthesis.” Nanoscale Res. Lett. Vol. 3 No. 2, 2008,pp. 65-70. doi:10.1007/s11671-008-9117-5
[6] S. Biwu and W. M. L. Leo, +Apparatus and method for nucleation and deposition of diamond using hot-filament DC plasma.” US Patent No. 6161499, 2000.
[7] G. Alfred, L. C. Robert and J. D. Patrick, “Grown diamond mosaic separation” US Patent No. 2007/0017437 2007
[8] Q. Wang, R. Schliesing, H. Zacharias and V. Buck, “Enhancement of diamond nucleation on silicon substrates in pulsed laser assisted hot filament CVD.” Appl. Surf. Sci. Vol. 138-139, 1999, pp. 429-433. doi:10.1016/S0169-4332(98)00436-X
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films.” Science, Vol. 306 No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[10] X. Wang, L. J. Zhi and K. Mullen, “Transparent, conductive graphene electrodes for dyesensitized solar cells.” Nano Lett. Vol. 8 No. 1, 2008, pp. 323-327. doi:10.1021/nl072838r
[11] G. Eda, and M. Chhowalla, “Graphene-based composite thin films for electronics.” Nano Lett. Vol. 9 No. 2, 2009, pp. 814-818. doi:10.1021/nl8035367
[12] K. Okano, S. Koizumi, S. R. P. Silva and G. A. J. Amaratunga, “Low-threshold cold cathodes made of nitrogendoped chemical-vapour-deposited diamond.” Nature, Vol. 381 No. 9, 1996, pp. 140-141. doi:10.1038/381140a0
[13] G. A. J. Amaratunga and S. R. P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thinfilm field emission cathodes.” Appl. Phys. Lett. Vol. 68 No. 18, 1996, pp. 2529-2531. doi:10.1063/1.116173
[14] W. A. De Heer, A. Chatelain and D. Ugarte, “A carbon nanotube field-emission electron source.” Science, Vol. 270 No. 5239, 1995, pp. 179-180. doi:10.1126/science.270.5239.1179
[15] R. B. Rakhi, A. L. M. Reddy, M. M. Shaijumon, K. Sethupati and S. Ramaprabhu, “Electron field emitters based on multi-walled carbon nanotubes decorated with nanoscale metal clusters.” J. Nanopart. Res. Vol. 10 No. 1, 2008, pp. 179-189. doi:10.1007/s11051-007-9240-8
[16] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amaratunga and M. Chhowalla, “Field emission from graphene based composite thin films.” Appl. Phys. Lett. Vol. 93 No. 23, 2008, pp. 233502-233505. doi:10.1063/1.3028339
[17] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin and C. V. Haesendonck, “Field emission from vertically aligned few-layer graphene.” J. Appl. Phys. Vol. 104 No. 8, 2008, pp. 084301-084305. doi:10.1063/1.2999636
[18] [18] D. Varshney, V. I. Makarov, P. Saxena, M. J-F. Guinel, A. Kumar, J. F. Scott, B. R. Weiner and G. Morell, Electron emission from diamond films seeded using kitchen-wrap polyethylene.” J. Phys. D. Appl. Phys. Vol. 44, 2010, pp. 085502-085508. doi:10.1088/0022-3727/44/8/085502
[19] K. Uppireddi, C. V. Rao, Y. Ishikawa, B. R. Weiner and G. Morell, “Temporal field emission current stability and fluctuations from graphene films.” Appl. Phys. Lett. Vol. 97 No. 6, 2010, pp. 62106-062108. doi:10.1063/1.3474800
[20] G. Morell, A. Gonzalez-Berrios, B. R. Weiner and S. Gupta, “Synthesis, structure, and field emission properties of sulfur-doped nan°Crystalline diamond.” J. Mater. Sci Mater. Electron, Vol. 17 No., 2006, pp. 443-451. doi 10.1007/s10854-006-8090-y
[21] A. González-Berríos, F. Piazza and G. Morell, “Effects of adsorbates on field emission reproducibility of sulfur-incorporated nan°Composite carbon films.” J. Vac. Sci. Technol. B, Vol. 25 No. 2, 2005, pp. 318-323. doi.org/10.1116/1.2437159
[22] Y. Wang, M. Rafailovich, J. Sokolov, D. Gersappe, T. Araki, Y. Zou, A. D. L. Kilcoyne, H. Ade, G. Marom and A. Lustiger, “Substrate Effect on the Melting Temperature of Thin Polyethylene Films.” Phys. Rev. Lett. Vol. 96 No. 2, 2006, pp. 028303-028306. doi:10.1103/PhysRevLett.96.028303
[23] Z. Stephen and D. Cheng, “Materials science: Polymer crystals downsized.” Nature, Vol. 448, 2007, pp. 1006-1007. doi:10.1038/4481006a
[24] M. Zheng and W. Du, “Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: A Raman spectroscopy study” Vibrational Spectroscopy, Vol. 40 No. 2, 2006, pp. 219-.224..doi:10.1016/j.vibspec.2005.10.001
[25] J. E. Field ed. London: Academic Press, 1979, pp.281-324.
[26] D. Varshney, C. V. Rao, M. J.-F. Guinel, Y. Ishikawa, B. R. Weiner and G. Morell, “Free standing graphene-diamond hybrid films and their electron emission properties.” J. Appl. Phys. Vol. 110 No. 4, 2011, pp. 044324-0443249 . doi:10.1063/1.3627370
[27] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy.” Phys. Chem. Chem. Phys. Vol. 9 No. 11, 2007, pp. 1276-1290. doi:10.1039/b613962k
[28] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers.” Phys. Rev. Lett. Vol. 97 No. 18, 2006, pp. 187401-187403. doi:10.1103/PhysRevLett.97.187401
[29] Thomsen and S. Reich, Phys. Rev. Lett. Vol. 85 No. , 2000, pp. 5214.
[30] L M Malard, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Reports 473 5. doi:10.1016/j.physrep.2009.02.003
[31] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, Carbon 42 (2004) 2867. doi:10.1016/j.carbon.2004.06.035
[32] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” Nano Lett. Vol. 9 No. 1, 2009, 30-35. doi:10.1021/nl801827v
[33] D. Varshney, B. R. Weiner and G. Morell, ““Growth and field emission study of a monolithic carbon nanotube/diamond composite.” Carbon, Vol. 48 No. 18, 2010, pp. 3353-3358. doi:10.1016/j.carbon.2010.05.025
[34] R. Arenal, P. Bruno, D. J. Miller, M. Bleuel, J. Lal and D. M. Gruen, “Diamond nanowires and the insulatormetal transition in ultranan°Crystalline diamond films.” Phys Rev B, Vol. 75 No. 19, 2007, pp. 195431-195441. doi:10.1103/PhysRevB.75.195431
[35] J. E. Butler, A. V. Sumant, “The CVD of Nanodiamond Materials.” Chem. Vap. Deposition Vol. 14 No. 7-8, 2008 pp. 145– 60. doi:10.1002/cvde.200700037
[36] S. Muto, T. Tanabe, A. Hirota, M. Rubel, V. Philipp and T. Maruyama, “TEM and EELS characterization of carbon dust and codeposited layers from the TEXTOR tokamak.” J. Nucl. Mater. Vol. 307-311, 2002, pp. 1289-1293. doi:10.1016/S0022-3115(02)01118-2
[37] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields.” Pr°C. R. S°C. London Ser. A Vol. 119 No. 78 , 1928, pp. 173-181.
[38] C. Ducati, E. Barborini, P. Piseri, P. Milani and J. Robertson, “Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films.” J. Appl. Phys. Vol. 92 No. 9, 2002, pp. 5482-5489. doi:10.1063/1.1512969
[39] M. Liao, Z. Zhang, W. Wang and K. Liao, “Field-emission current from diamond film deposited on molybdenum.” J. Appl. Phys. Vol. 84 No. 2, 1998, pp. 1081-1084. doi:10.1063/1.368096
[40] J. D. Carey, R. D. Forrest and S. R. P. Silva, “Origin of electric field enhancement in field emission from amorphous carbon thin films.” Appl. Phys. Lett. Vol. 78 No. 16, 2001, pp. 2339-2341. doi:10.1063/1.1366369
[41] E. D. Eidelman and A. Y. Vul, “The strong thermoelectric effect in nan°Carbon generated by the ballistic phonon drag of electrons.” J. Phys. Condens. Matter. Vol. 19 No. , 2007, pp. 266210-266221.
[42] J. Liu, B. Zeng, Z. Wu, J. Zhu and X. Liu, Improved field emission property of graphene paper by plasma treatment” Appl. Phys. Lett. Vol. 97, 2010, pp. 033109-033111. doi:10.1063/1.3467042
[43] V. P. Verma, S. Das, I. Lahiri and W. Choi, “Large-area graphene on polymer film for flexible and transparent anode in field emission device Appl. Phys. Lett. Vol. 96, 2010, pp . 203108-203110. doi:10.1063/1.3431630

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.