Gravity Field Variations Associated with the Buried Geological Structures: San Marcos Fault (NE Mexico) Case Study


Gravity data are sensitive to local vertical offsets across high-angle faults, where rocks with different densities are juxtaposed. Yet high densities in some Mesozoic sedimentary rocks just above the basement may smear out the subtle gravity signatures of basement faults. At this study the gravity data processing tends to avoid ill-described “black-box” techniques. The study area is situated in the Palomas site, Cuatrociénegas region, Coahuila, NE Mexico. The San Marcos Fault is at least 300 km long and has WNW-ESE trend from the central part of Nuevo León State through Coahuila, and finally to the eastern part of Chihuahua State. Gravimetric data shows that the lowest values of free air and Bouguer anomalies are in the southern part of the area, and the highest values are in the western and central part of the area. Between these parts exists a zone of high horizontal gravity gradient. Configuration of linear elements of gravity field (gradient zones) delimited the San Marcos Fault in the San Marcos valley below thickness of recent sedimentary cover. Two density models were carried out, which showed that the Cretaceous rocks are in discordant contact with the Paleo- zoic rocks that can be related to the San Marcos Fault. The density was determinate using to Nettleton’s method, which results highlight the presence of the San Marcos Fault. Density models showed that the Quaternary sediments are in direct contact with the San Marcos Fault.

Share and Cite:

Yutsis, V. , Quintanilla-López, Y. , Krivosheya, K. , Montalvo-Arrieta, J. and Chávez-Cabello, G. (2012) Gravity Field Variations Associated with the Buried Geological Structures: San Marcos Fault (NE Mexico) Case Study. Journal of Modern Physics, 3, 1236-1246. doi: 10.4236/jmp.2012.329160.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. J. Hinze, C. Aiken, J. Brozena, B. Coakley, D. Dater, G. Flanaga, R. Forsberg, T. Hildenbrand, G. R. Keller, J. Kellogg, R. Kucks, X. Li, A. Mainville, R. Morin, M. Pilkington, D. Plouff, D. Ravat, D. Roman, J. Urrutia-Facugauchi, M. Véronneau, M. Webring and D. Winester, “New Standards for Reducing Gravity Data: The North American Gravity Database,” Geophysics, Vol. 70, No. 4, 2005, pp. J25-J32.
[2] C. Jorgensen, “Tectonic Interpretation Using Potential Field Data for the Sweetgrass Arch Area, Montana-Alberta, Saskatchewan. Rocky Mountain Section,” AAPG Meeting, Denver, 9-11 August 2004.
[3] H. Lyatsky, D. P. Reg Olson and L. Godwin, “Detection of Subtle Basement Faults with Gravity and Magnetic Data in the Alberta Basin,” The leading Edge, Vol. 24, No. 12, 2005, p. 1282.
[4] H. Lyatsky, D. P. R. Olson and L. Godwin, “Mapping of Basement Faults with Gravity and Magnetic Data in Northern Alberta,” 2005., 12pp
[5] P. V. Sharma, “Environmental and Engineering Geophysics,” Cambridge University Press, Cambridge, 2004.
[6] A. T. Ponce, V. Yutsis, E. R. H. Flores, A. A. Bulychev and K. Krivosheya, “Tectonic Features of La Popa Basin and Adjacent Areas in the NE Mexico Received with the Geophysical Potential Fields,” Bulletin of the Mexican Geological Society, Vol. 63, No. 2, 2011, pp. 271-283.
[7] V. V. Yutsis, U. Jenchen, H. de León-Gómez, F. Izaguirre Valdez and K. Krivosheya, “Paleogeographic Development of the Surroundings of Cerro Prieto Water Reservoir, Pablillo Basin, NE Mexico, and Geophysical Modeling of the Reservoir’s Subsurface,” Neues Jahrbuch für Geologie und Pal?ontologie, Vol. 253, No. 1, 2009, pp. 41-59. doi:10.1127/0077-7749/2009/0253-0041
[8] V. Yutsis, A. T. Ponce and K. Krivosheya, “Geophysical Modeling of the Surroundings of La Popa Basin, NE Mexico, with Gravity and Magnetic Data,” In: E. V. Sharkov, Ed., New Frontiers in Tectonic Research—General Problems, Sedimentary Basins and Island Arcs, InTech Publishing, Rijeka, 2011, pp. 125-142.
[9] M. Talwani, J. L. Worzel and M. Landisman, “Rapid Gravity Computations for Two-Dimensional Bodies with Application to the Mendocino Submarine Fracture Zone,” Journal of Geophysical Research, Vol. 64, No. 1, 1959, pp. 49-59. doi:10.1029/JZ064i001p00049
[10] W. M. Telford, L. P. Geldart and R. E. Sheriff, “Applied Geophysics,” Cambridge University Press, Cambridge, 1990. doi:10.1017/CBO9781139167932
[11] R. P. y Sánchez, “Post-Paleozoic Tectonics of Northeast Mexico and Its Role in the Evolution of the Gulf of Mexico,” Geofísica Internacional, Vol. 25, 1986, pp. 157-206.
[12] S. Charleston, “Stratigraphy, Tectonics and Hydrocarbon Potential of the Lower Cretaceous, Coahuila Series, Coahuila, Mexico,” Ph.D. Thesis, University of Michigan, Michigan, 1974.
[13] S. Charleston, “A Summary of the Structural Geology and Tectonics of the State of Coahuila, Mexico,” In: C. I. Schmidt and S. B. Katz, Eds., Lower Cretaceous Stratigraphy and Structure, Northern Mexico, Field Trip Guidebook, West Texas Geological Society, Midland, 1981.
[14] H. V. Lyatsky, D. I. Pana and M. Grobe, “Basement Structure in Central and Southern Alberta: Insights from Gravity and Magnetic Maps,” EUB/AGS Special Report, Vol. 72, 2005, pp. 1-83.
[15] J. W. McKee, N. W. Jones and L. E. Long, “Stratigraphy and Provenance of Strata along the San Marcos Fault, Central Coahuila, Mexico,” Geological Society of America Bulletin, Vol. 102, No. 5, 1990, pp. 593-614. doi:10.1130/0016-7606(1990)102<0593:SAPOSA>2.3.CO;2
[16] T. H. Anderson and V. A. Schmidt, “The Evolution of Middle America and the Gulf of Mexico-Caribbean Sea Region during Mesozoic Time,” Geological Society of America Bulletin, Vol. 94, No. 8, 1983, pp. 941-966. doi:10.1130/0016-7606(1983)94<941:TEOMAA>2.0.CO;2
[17] I. R. A. Gutierrez, “Paleomagnetismo de Rocas Jurasicas y Cretácicas del Valle San Marcos, Coahuila, México,” Master Thesis, Universidad Nacional Autonoma de Mexico, , Querétaro, 2006.
[18] G. Chávez-Cabello, J. J. Aranda-Gómez, R. S. Molina-Garza, T. Cossío-Torres, L. R. Arvizu-Gutiérrez and G. A. González-Naranjo, “The San Marcos Fault: A Jurassic Multireactived Basement Structure in Northeastern Mexico,” Geology of México: Celebrating the Centenary of the Geological Society of México, Vol. 422, 2007, pp. 261- 286.
[19] G. C. Cabello, “Deformación y Magmatismo de la Cuenca de Sabinas, Coahuila, México,” Ph.D. Thesis, Universidad Nacional Autonoma de Mexico, Centro de Geo- ciencias, 2005.
[20] G. Chávez-Cabello, J. J. Aranda-Gómez, R. Molina-Garza, T. Cossío-Torres, I. R. Arvizu-Gutiérrez and y G. González-Naranjo, “The San Marcos Fault: A Jurassic Structure of Multi-Reactivated Basement of the North-East of Mexico,” In: S. A. Alaniz-álvarez and A. F. Nieto-Samaniego, Eds., Bulletin of the Mexican Geological Society, Commemorative volume of the centenary Big Tectonic Frontiers of Mexico, Vol. LVII, No. 1, 2005, pp. 27-52.
[21] W. R. Muehlberger, R. C. Belcher and L. K. Goetz, “Quarternary Faulting in Trans-Pecos Texas,” Geology, Vol. 6, No. 6, 1978, pp. 337-340. doi:10.1130/0091-7613(1978)6<337:QFITT>2.0.CO;2
[22] J. J. Aranda-Gómez, J. F. Luhr, T. G. Housh, G. Valdez-Moreno and G. Chávez-Cabello, “Late Cenozoic Intraplate-Type Volcanism in Central and Northern México: A Review,” Geology of México: Celebrating the Centenary of the Geological Society of Mexico, Vol. 422, 2007, pp. 93-128.
[23] J. J. Aranda-Gomez, J. F. Lhur, C. D. Henry, T. Becker and G. Chavez-Cabello, “Reactivation of the San Marcos Fault during Mid- to Late Tertiary Extension, Chihuahua, Mexico,” In: T. H. Anderson, J. A. Nourse, J. W. McKee and M. B. Steiner, Eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives, Geological Society of America, Special Paper 393, 2005, pp. 481-521.
[24] J. Aranda-Gómez, J. Luhr, T. Housh, C. Cannor, T. Becker and C. Henry, “Synextensional Pliocene-Pleistocene Eruptive Activity in the Camargo Volcanic Field, Chihuahua, México,” Geological Society of America Bu letin, Vol. 115, No. 3, 2003, pp. 298-313.
[25] J. W. McKee, N. W. Jones and L. E. Long, “History of Recurrent Activity along a Major Fault in Northeastern Mexico,” Geology, Vol. 12 , No. 2, 1984, pp. 103-107. doi:10.1130/0091-7613(1984)12<103:HORAAA>2.0.CO;2
[26] R. S. Molina-Garza, I. R. Arvizu-Gutiérrez and y G. Chávez-Cabello, “Paleomagnetism of the Palomas Formation (Jurassic) and of the Permian-Triassic Granites in South Coahuila: Tectonic Implications,” GEOS, Vol. 23, 2003, p. 112.
[27] A. J. Crone, P. M. De Martini, M. N. Machette, K. Okumura and J. Prescott, “Paleoseismicity of Two Historically Quiescent Faults in Australia: Implications for Fault Behavior in Stable Continental Regions,” Bulletin of the Seismological Society of America, Vol. 93, No. 5, 2003, pp. 1913-1934. doi:10.1785/0120000094
[28] D. Doser, “The 16 August 1931 Valentine, Texas, Earthquake: Evidence for Normal Faulting in West Texas,” Bulletin of the Seismological Society of America, Vol. 77, No. 6, 1987, pp. 2005-2017.
[29] D. Doser and J. Rodriguez, “The Seismicity of Chihuahua, Mexico, and the 1928 Parral Earthquake,” Physics of the Earth and Planetary Interiors, Vol. 78, No. 1-2, 1993, pp. 97-104. doi:10.1016/0031-9201(93)90086-O
[30] I. N. Galván-Ramírez and J. C. Montalvo-Arrieta, “The Historical Seismicity and Prediction of Ground Motion in Northeast Mexico,” Journal of South American Earth Sciences, Vol. 25, 2008, pp. 37-48. doi:10.1016/j.jsames.2007.07.004
[31] R. K. Goldhammer, “Mesozoic Sequence Stratigraphy and Paleogeographic Evolution of Northeast Mexico,” Geological Society of America, Special Paper 340, 1999.
[32] T. Harding, “Seismic Characteristics and Identification of Negative Flower Strctures, Positive Flower Strctures, and Positive Structural Inversion,” Bulletin of the American Association of Petroleoum Geologists, Vol. 69, No. 4, 1985, pp. 582-600.
[33] L. L. Nettleton, “Determination of Density for Reduction of Gravimeter Observations,” Geophysics, Vol. 4, No. 3, 1939, pp. 176-183
[34] L. L. Nettleton, “Elementary Gravity and Magnetics for Geologists and Seismologists,” Society of Exploration Geophysicists, Geophysical Monograph Series No. 1, 1971.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.