Development of Efficient Fermentation Process at Bioreactor Level by Taguchi's Orthogonal Array Methodology for Enhanced Dextransucrase Production from Weissella confusa Cab3

Abstract

The influence of medium ingredients on extracellular dextransucrase production by a new bacterial strain Weissella confusa Cab3 (Genbank Accession Number JX649223) was evaluated using fractional factorial design of Taguchi's orthogonal array. Four metabolism influencing factors viz. sucrose, yeast extract, K2HPO4 and Tween80 were selected to optimize dextransucrase production by W. confusa Cab3 using fractional factorial design of Taguchi methodology. Based on the influence of interaction components of fermentation, least significant factors of individual level have higher interaction severity index and vice versa for enzyme production from Weissella confusa Cab3. Sucrose and yeast extract were found to be the most significant factors which positively influenced the dextransucrase production. The optimized medium composition consisted of sucrose—5%; yeast extract—2%; K2HPO4—1.0%; Tween80—0.5%, based on Taguchi orthogonal array method. The optimized composition gave an experimental value of dextransucrase activity of 17.9 U/ml at shake flask level which corresponded well with the predicted value of 17.54 U/ml by the model. The optimized medium by Taguchi method gave significant (3 fold) enhancement of dextransucrase activity as compared to unoptimised enzyme activity of 6.0 U/ml. The dextransucrase production was scaled up in lab scale bioreactor resulting in further enhancement of enzyme activity (22.0 U/ml).

Share and Cite:

S. Shukla and A. Goyal, "Development of Efficient Fermentation Process at Bioreactor Level by Taguchi's Orthogonal Array Methodology for Enhanced Dextransucrase Production from Weissella confusa Cab3," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 277-283. doi: 10.4236/aim.2012.23033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. J. Hehre, “Enzymatic Synthesis of Polysaccharides: A Biological Type of Polymerization,” Advances in Enzymology, Vol. 11, 1951, pp. 297-337.
[2] V. Monchois, R. M. Willemot and P. Monsan, “Glucansucrases: Mechanism of Action and Structure-Function Relationships,” FEMS Microbiology Reviews, Vol. 23, No. 2, 1999, pp. 131-151. doi:10.1111/j.1574-6976.1999.tb00394.x
[3] P. Monsan, S. Bozonnet, C. Albenne, G. Joucla, R. M. Willemot and M. Remaund-Simeon, “Homopolysaccharides from Lactic Acid Bacteria,” International Dairy Journal, Vol. 11, 2001, pp. 675-685. doi:10.1016/S0958-6946(01)00113-3
[4] N. V. Sankpal, A. P. Joshi, S. R. Sainkar and B. D. Kulkarni, “Production of Dextran by Rhizopus sp. Immobilized on Porous Cellulose Support,” Process Biochemistry, Vol. 37, No. 4, 2001, pp. 395-403. doi:10.1016/S0032-9592(01)00221-7
[5] M. Kitaoka and J. F. Robyt, “Large-Scale Preparation of Highly Purified Dextrasucrase from a High Producing Constitutive Mutant of Leuconostoc mesenteroides B-512FMC,” Enzyme and Microbial Technology, Vol. 23, No. 6, 1998, pp. 386-391. doi:10.1016/S0141-0229(98)00060-X
[6] D. Kim and J. F. Robyt, “Production, Selection, and Characteristics of Mutants of Leuconostoc mesenteroides B-742 Constitutive for Dextransucrases,” Enzyme and Microbial Technology, Vol. 17, No. 8, 1995, pp. 689-695. doi:10.1016/0141-0229(94)00021-I
[7] D. Kim and J. F. Robyt, “Dextransucrase Constitutive Mutans of Leuconostoc mesenteroides B-1299,” Enzyme and Microbial Technology, Vol. 17, No. 12, 1995, pp. 1050-1056. doi:10.1016/0141-0229(95)00039-9
[8] G. L. Cote, J. A. Ahlgren and M. R. Smith, “Some Structural Features of an Insoluble D-Glucan from a Mutant Strain of Leuconostoc mesenteroides NRRL B-1355,” Journal of Industrial Microbiology and Biotechnology, Vol. 23, No. 1, 1999, pp. 656-660. doi:10.1038/sj.jim.2900678
[9] H. Eifuku, A. Yoshimitsu-Narita, S. Sato, T. Yakushiji and M. Inoue, “Production and Partial Characterization of the Extracellular Polysaccharides from Oral Streptococcus salivarius,” Carbohydrate Research, Vol. 194, 1989, pp. 247-260. doi:10.1016/0008-6215(89)85023-2
[10] V. Monchois, R-M. Willemot and P. Monsan, “Glucansucrases: Mechanism of Action and Structure-Function Relationships,” FEMS Microbiology Reviews, Vol. 23, No. 2, 1999, pp. 131-151. doi:10.1111/j.1574-6976.1999.tb00394.x
[11] V. Monchois, P. R-S. Monsan and R. M. Willemot, “Cloning and Sequencing of an Extracellular Dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 Synthesizing Only α(1-6) Glucan,” FEMS Microbiology Letters, Vol. 159, No. 2, 1998, pp. 307-315. doi:10.1111/j.1574-6968.1998.tb12876.x
[12] H. Abo, T. Matsumura, T. Kodama, H. Ohta, K. Fukui, K. Kato and H. Kagawa, “Peptide Sequences for Sucrose Splitting and Glucan Binding within Streptococcus sobrinus Glucosyltransferase (Water-Insoluble Glucan Synthetase),” Journal of Bacteriolology, Vol. 173, 1991, pp. 989-996.
[13] J. J. Ferretti, M. L. Gilpin and R. R. B. Russell, “Nucleotide Sequence of a Glucosyltransferase Gene from Streptococcus sobrinus Mfe28,” Journal of Bacteriology, Vol. 169, 1987, pp. 4271-4278.
[14] S. Patel, A. Majumder and A. Goyal, “Potentials of exopolysaccharides from Lactic Acid Bacteria,” Indian Journal of Microbiology, Vol. 52, No. 1, 2012, pp. 3-12. doi:10.1007/s12088-011-0148-8
[15] R. K. Purama, A. Goyal, “Dextransucrase Production by Leuconostoc mesenteroides,” Indian Journal of Microbiology, Vol. 2, 2005, pp. 89-101.
[16] A. Singh, A. Majumder and A. Goyal, “Artificial Intelligence Based Optimization of Exocellular Glucansucrase Production from Leuconostoc dextranicum NRRL B-1146,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 8201-8206. doi:10.1016/j.biortech.2008.03.038
[17] R. K. Purama and A. Goyal, “Screening and Optimization of Nutritional Factors for Higher Dextransucrase Production by Leuconostoc mesenteroides NRRL B-640 Using Statistical Approach,” Bioresource Technology, Vol. 99, No. 15, 2008, pp. 7108-7114. doi:10.1016/j.biortech.2008.01.032
[18] S. Patel, D. Kothari and A. Goyal, “Enhancement of Dextransucrase Activity of Pediococcus pentosaceus Mutant SPAm1 by Response Surface Methodology,” Indian Journal of Microbiology, Vol. 10, 2011, pp. 346-351.
[19] S. Shukla and A. Goyal, “16S rRNA Based Identification of a Glucan Hyper-Producing Weissella confuse,” Enzyme Research, 2011, Article ID: 250842.
[20] S. Shukla and A. Goyal, “Optimization of Fermentation Medium for Enhanced Glucansucrase and Glucan Production from Weissella confusa,” Brazilian Archives of Biology and Technology, Vol. 54, No. 6, 2011, pp. 1117-1124.
[21] J. C. De Man, M. Rogosa and M. E. Sharpe, “A Medium for the Cultivation of lactobacilli,” Journal of Applied Bacteriology, Vol. 23, No. 1, 1960, pp. 130-135. doi:10.1111/j.1365-2672.1960.tb00188.x
[22] H. M. Tsuchiya, H. J. Koepsell, J. Corman, G. Bryant, M. O. Bogard, V. H. Feger and R. W. Jackson, “The Effect of Certain Culture Factors on Production on Dextransucrase by Leuconostoc mesenteroides,” Journal of Bacteriology, Vol. 64, 1952, pp. 521-526.
[23] N. Nelson, “A Photometric Adaptation of the Somoyogi Method for the Determination of Glucose,” Journal of Biological Chemistry, Vol. 153, 1944, pp. 375-380.
[24] M. Somogyi, “A New Reagent for the Determination of Sugars,” Journal of Biological Chemistry, Vol. 160, 1945, pp. 61-68.
[25] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, 1951, pp. 265-275.
[26] J. B. Sumner and E. B. Sisler, “A Simple Method for Blood Sugar,” Archives of Biochemistry, Vol. 4, 1944, pp. 333-336.
[27] V. B. Veljkovic, M. L. Lazic, D. J. Rutic, S. M. Jovanovic and D. U. Skala, “Effect of Aeration on Extracellular Dextran Production by Leuconostoc mesenteroides,” Enzyme and Microbial Technology, Vol. 14, No. 8, 1992, pp. 665-668. doi:10.1016/0141-0229(92)90044-O
[28] S. D. Sawale and S. S. Lele, “Increased Dextransucrase Production by Response Surface Methodology from Leuconostoc Species; Isolated from Fermented Idli Batter,” Global Journal of Biotechnology and Biochemistry, Vol. 4, No. 2, 2009, pp. 160-167.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.