Share This Article:

Growth Hormone Prevents the Memory Deficit Caused by Oxidative Stress in Early Neurodegenerative Stage in Rats

Full-Text HTML Download Download as PDF (Size:696KB) PP. 287-293
DOI: 10.4236/nm.2012.33033    3,371 Downloads   5,390 Views   Citations


Oxidative stress has been involved in neurodegenerative diseases. The growth hormone (GH) counteracts the levels of reactive oxygen species. Previously, we showed that the prolonged exposure to ozone causes oxidative stress in the hippocampus and memory deficits. In this work, we analyzed the effects of the growth hormone on the memory deficit generated by ozone exposure, growth hormone effects on the Insulin-like growth factor I (IGF-I), and the serinethreonine protein kinase (Akt) activation in the dentate gyrus. Our results show that GH prevents memory deficits in early stages of the neurodegenerative process.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Castillo-Padilla, G. Borgornio-Pérez, A. Zentella-Dehesa, A. Sandoval-Montiel, J. Gallegos and S. Rivas-Arancibia, "Growth Hormone Prevents the Memory Deficit Caused by Oxidative Stress in Early Neurodegenerative Stage in Rats," Neuroscience and Medicine, Vol. 3 No. 3, 2012, pp. 287-293. doi: 10.4236/nm.2012.33033.


[1] M. A. Mehlman and C. Borek, “Toxicity and Biochemical Mechanism of Ozone,” Enviromenmental Research”, Vol. 42, No 1, 1987, pp. 36-53. doi:10.1016/S0013-9351(87)80005-1
[2] M. G. Mustafa, “Biochemical Basis of Ozone Toxicity,” Free Radicals Biology and Medicine, Vol. 9, No. 3, 1990, pp. 245-265. doi:10.1016/0891-5849(90)90035-H
[3] M. R. ávila-Costa, L. Colín-Barranque, T. I. Fortoul, J. P. Machado-Salas, J. Espinosa-Villanueva, C. Rugerio- Vargas, G. Borgornio, C. Dorado and S. Rivas-Arancibia, “Motor Impairments in an Oxidative Stress Model and Its Correlation with Cytological Changes on Rat Striatum and Prefrontal Cortex,” International Neuroscience, Vol. 108, No. 3-4, 2001, pp. 193-200.
[4] N. Pereyra-Mu?oz, C. Rugerio-Vargas, M. Angoa-Pérez, G. Borgonio-Pérez and S. Rivas-Arancibia, “Oxidative Damage in Substantia Nigra and Striatum of Rats Chronically Exposed to Ozone,” Journal of Chemical Neuroanatomy, Vol. 31, No. 2, 2006, pp. 114-123. doi:10.1016/j.jchemneu.2005.09.006
[5] S. Rivas-Arancibia, R. Guevara-Guzmán, Y. López-Vidal, E. Rodríguez-Martínez, M. Zanardo-Gomes, M. Angoa-Pérez and R. Raisman-Vozari, “Oxidative Stress Caused by Ozone Exposure Induces Loss of Brain Repair in the Hippocampus of Adult Rats,” Toxicological Science, Vol. 113, No. 1, 2010, pp. 187-197. doi:10.1093/toxsci/kfp252
[6] S. Rivas-Arancibia, R. Vázquez-Sandoval, D. González-Kladiano, S. Schneider-Rivas and A. Lechuga-Guerrero, “Effects of Ozone Exposure in Rats on Memory and Levels of Brain and Pulmonary Superoxide Dismutase,” En- viromental Research, Vol.76, No. 1, 1998, pp. 33-39. doi:10.1006/enrs.1997.3784
[7] M. R. ávila-Costa, L. Colin-Barenque, T. I. Fortoul, J. P. Machado-Salas, J. Espinosa-Villanueva, C. Rugerio-Vargas and S. Rivas-Arancibia, “Memory Deterioration in an Oxidative stress Model and Its Correlation with Cytological Changes on Rat Hippocampus CA1,” Neuroscience Letters, Vol. 270, No. 2, 1999, pp. 107-109. doi:10.1016/S0304-3940(99)00458-9
[8] M. J. Forster, A. Dubey and K. M. Dawson, “Age Related Losses of Cognitive Function and Motor Skills in Mice Are Associated with Oxidative Protein Damage in the Brain,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, No. 10, 1996, pp. 4765-4769. doi:10.1073/pnas.93.10.4765
[9] M. M. Ramsey, J. L. Weiner, T. P. Moore, C. S. Carter and W. E. Sonntag, “Growth Hormone Treatment Attenuates Age-Related Changes in Hippocampal Short-Term Plasticity and Spatial Learning,” Neuroscience, Vol. 129, No. 1, 2004, pp. 119-127. doi:10.1016/j.neuroscience.2004.08.001
[10] A. Martínez-Canabal, M. Angoa-Pérez, C. Rugerio-Vargas, G. Borgonio-Pérez and S. Rivas-Arancibia, “Effect of Growth Hormone on Cyclooxygenase-2 Expression in the Hippocampus of Rats Chronically Exposed to Ozone,” International Journal of Neuroscience, Vol. 118, No. 3, 2008, pp. 455-469. doi:10.1080/00207450701593160
[11] A. N. Donahue, M. Aschner, L. H. Lash, T. Syversen and W. E. Sonntag, “Growth Hormone Administration to Aged Animals Reduces Disulfide Glutathione Levels in Hippocampus,” Mechanims of Ageing and Development, Vol. 127, No. 1, 2006, pp. 57-63.
[12] P. E. Lobie, J. García-Aragón, D. T. Lincoln, R. Barnard, J. N. Wilcox and M. J. Waters, “Localization and Ontogeny of Growth Hormone Receptor Gene Expression in the Central Nervous System,” Brain Research, Developmental Brain Research, Vol. 74, No. 2, 1993, pp. 225- 233. doi:10.1016/0165-3806(93)90008-X
[13] E. Li, K. D. Hyun, M. Cai, S. Lee, Y. Kim, E. Lim, J. H. Ryu, T. G. Unterman and S. Park, “Hippocampus-Dependent Spatial Learning and Memory Are Impaired in Growth Hormone-Deficient Spontaneous Dwarf Rats,” Endocrine Journal, Vol. 58, No. 4, 2011, pp. 257-267. doi:10.1507/endocrj.K11E-006
[14] C. Bondy and E. Chin, “IGF-I mRNA Localization in Trigeminal and Sympathetic Nerve Target Zones during Rat Embryonic development,” Advance in Experimental Medicine and Biology, Vol. 293, 1991, pp. 431-437.
[15] K. L. Stenvers, P. K. Lund and M. Gallagher, “Increased Expression of Type 1 Insulin-Like Growth Factor Receptor Messenger RNA in Rat Hippocampal Formation Is Associated with Aging and Behavioral Impairment,” Neuroscience, Vol. 72, No. 2, 1996, pp. 505-518. doi:10.1016/0306-4522(95)00524-2
[16] H. Dudek, S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao, G. M. Cooper, R. A. Segal, D. R. Kaplan and M. E. Greenberg, “Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt,” Science, Vol. 275, No. 5300, 1997, pp. 661-665. doi:10.1126/science.275.5300.661
[17] D. Dávila and I. Torres-Aleman, “Neuronal Death by Oxidative Stress Involves Activation of FOXO3 through a Two-Arm Pathway That Activates Stress Kinases and Attenuates Insulin-Like Growth Factor I Signaling,” Molecular Biology of the Cell, Vol. 19, No. 5. 2008, pp. 2014-2025. doi:10.1091/mbc.E07-08-0811
[18] E. S. Lein, X. Zhao and F. H. Gage, “Defining a Molecular Atlas of the Hippocampus Using DNA Microarrays and High-Throughput in Situ Hybridization,” Journal of Neuroscience, Vol. 24, No. 15, 2004, pp. 3879-3889. doi:10.1523/JNEUROSCI.4710-03.2004
[19] I. C. van Nieuwpoort and M. L. Drent, “Cognition in the Adult with Childhood-Onset GH Deficiency,” European Journal Endocrinology, Vol. 159. No. 1, 2008, pp. S53-S57. doi:10.1530/EJE-08-0279
[20] G. Mereu, M. Fà, L. Ferraro, R. Cagiano, T. Antonelli, M. Tattoli, G. L.Gessa and V. Cuomo, “Prenatal Exposure to Cannabinoid Agonist Produces Memory Deficits Linked to Dysfunction in Hippocampal Log-Term Potentiation and Glutamate Release,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 8, 2003, pp. 4915-4920. doi:10.1073/pnas.0537849100
[21] R. G. M. Morris, P. Garrud, J. N. P. Rawlins and J. O’Keefe, “Place Navigation Impaired in Rats with Hippocampal Lesions,” Nature, Vol. 297, No. 5868, pp. 681- 683. doi:10.1038/297681a0
[22] A. I. Duarte, P. Santos, C. R. Oliveira, M. S. Santosa and A. C. Rego, “Insulin Neuroprotection against Oxidative Stress Is Mediated by Akt and GSK-3Beta Signaling Pathways and Changes in Protein Expression,” Biochimica et Biophysica acta, Vol. 1783, No. 6, 2008, pp. 994-1002. doi:10.1016/j.bbamcr.2008.02.016
[23] J. Piriz, A. Muller, J. L. Trejo and I. Torres-Alemán, “IGF-I and the Aging Mammalian Brain,” Experimental Gerontology, Vol. 46, No. 2-3, 2011, pp. 96-99. doi:10.1016/j.exger.2010.08.022
[24] S. Jessberger, R. L. Clark, N. J. Broadbent, G. D. Clem-enson, A. Consiglio, D. C. Lie, L. Squire and F. H. Gage, “Dentate Gyrus-Specific Knockdown of Adult Neuro-genesis Impairs Spatial and Object Recognition Memory in Adult Rats,” Learning and Memory, Vol. 16, 2009, pp. 147-154. doi:10.1101/lm.1172609
[25] A. E. Handayaningsih, G. Iguchi, H. Fukuoka, H. Nishi-zawa, M. Takahashi, M. Yamamoto, E. H. Herningtiyas, Y. Okimura, H. Kaji, K. Chihara, S. Seino and Y. Takahashi, “Recative Oxygen Species Play an Essential Role in IGF-I Induced Myocyte Hypertrophy in C2C12 Myocytes,” Endocrinology, Vol. 152, No. 3, 2011, pp. 912-921.
[26] J. Papaconstantinou, “Insulin/IGF-1 and ROS Signaling Pathway Cross-Talk in Aging and Longevity Determination,” Molecular and Cellular Endocrinology, Vol. 299, No. 1, 2009, pp. 89-100. doi:10.1016/j.mce.2008.11.025
[27] D. V. Castillo and S. Rivas-Arancibia, “Interacción Entre los Factores Neurotróficos y Las Especies Reactivas de oxíGeno en los Mecanismos de Muerte y Proliferación Celular,” Archivos en Neurociencias, Vol. 16, No. 1, 2011, pp. 26-32.
[28] N. R. Leslie, “The Redox Regulation of PI 3-Kinase-Dependet Signaling,” Antioxidants and Redox Signal, Vol. 8, No. 9-10, 2006, pp. 1765-1774.
[29] J. L. Martindale and N. J. Holbrook, “Cellular Response to Oxidative Stress: Signaling for Suicide and Survival,” Journal of Cellular and Comparative Physiology, Vol. 192, No. 1, 2002, pp. 1-15.
[30] J. E. Le Belle, N. M. Orozco, A. A. Paucar, J. P. Saxe, J. Mottahedeh, A. D. Pyle, H. Hu and H. I. Kornblum, “Pro-liferative Neural Stem Cells Have High Endogenous ROS Levels That Regulate Self-Renewal and Neurogenesis in a PI3-K/Akt-Dependent Manner,” Cell Stem Cell, Vol. 8, No. 1, 2011, pp. 59-71. doi:10.1016/j.stem.2010.11.028
[31] N. M. Walton, R. Shin, K. Tajinda, C. L. Heusner, J. H. Kogan, S. Miyake, Q. Chen, K. Tamura and M. Matsumoto, “Adult Neurogenesis Transiently Generates Oxidative Stress,” PLoS One, Vol. 7, No. 4, 2012, Article ID: e35264.
[32] N. Yamasaki, M. Maekawa, K. Kobayashi, Y. Kajii, J. Maeda, M. Soma, K. Takao, K. Tanda, K. Ohira, K. Toyama, K. Kanzaki, K. Fukunaga, Y, Sudo, H. Ichinose, M. Ikeda, N. Iwata, N. Ozaki, H. Suzuki, M. Higuchi, T. Suhara, S. Yuasa and T. Miyakawa, “Alpha-CaMKII Deficiency Causes Immature Dentate Gyrus, a Novel Candidate,” Endophenotype of Psychiatry Disrordes, Vol. 1,No. 6, 2008, pp. 1-21.
[33] A. S. Araujo, A. T. Enzveiler, P. Schenkel, M. F. Fernandes, W. A. Partata, S. Llesuy and A. Belló-Klein, “Oxidative Stress Activates Insulin-Like Growth Factor I Receptor Protein Expression, Mediating Cardiac Hypertrophy Induced by Thyrosine,” Molecular and Cell Bio-chemistry, Vol. 303, No. 1-2, 2007, pp. 89-95. doi:10.1007/s11010-007-9459-9
[34] G. Hinkal and Donehower, “How Does Supression of IGF-I Signaling by DNA Damage Affect Aging and Longevity,” Mechanisms of Ageing and Development, Vol. 129, No. 5, 2008, pp. 243-253.
[35] M. E. Díaz, L. González, J. G. Miquet, C. S. Martínez, A. I. Bartke and D. Turyn, “Growth Hormone Modulation of EGF-Induced PI3K-Akt Pathway in Mice Liver,” Cell Signal, Vol. 24, No. 2, 2011, pp. 514-523.
[36] H. M. Brown-Borg, S. G. Rakoczy, M. A. Romanick and M. A. Kennedy, “Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Hepatocyte Antioxidative Enzymes,” Experimental Biology and Medicine, Vol. 227, No. 2, 2002, pp. 94-104.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.