Visualization of decreased docosahexaenoic acid in the hippocampus of rats fed an n – 3 fatty acid-deficient diet by imaging mass spectrometry

Abstract

The present study employed an imaging mass spectrometry (IMS) method to evaluate the effect of dietary n – 3 fatty acids on the fatty acid composition in rat brain. Rats were divided into two groups and fed either an n – 3 fatty acid-deficient or adequate diet. We determined the decreased n – 3 fatty acids in the hippocampus of rats fed an n – 3 fatty acid-deficient diet compared to the control. IMS visualization was achieved at a resolution of 100 m in rat brain, and showed decreased docosahexaenoic acid (DHA)-containing phosphatidyl choline (PC) or phosphatidyl ethanolamine (PE) in the hippocampus of rats fed an n – 3 fatty acid-deficient diet.

Share and Cite:

Taira, S. , Hashimoto, M. , Saito, K. and Shido, O. (2012) Visualization of decreased docosahexaenoic acid in the hippocampus of rats fed an n – 3 fatty acid-deficient diet by imaging mass spectrometry. Journal of Biophysical Chemistry, 3, 221-226. doi: 10.4236/jbpc.2012.33025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Crawford, M.A. (1990) Ups. Journal of Medical Sciences, 48, 43-78.
[2] Denys, A., Hichami, A., Maume, B. and Khan, N.A. (2001) Docosahexaenoic acid modulates phorbol ester induced activation of extracellular signal-regulated kinases 1 and 2 in NIH/3T3 cells. Lipids, 36, 813-818. doi:10.1007/s11745-001-0789-2
[3] Wainwright, P.E., Huang, Y.S., Coscina, D.V., Levesque, S. and McCutcheon, D. (1994) Brain and behavioral effects of dietary n ? 3 deficiency in mice: A three generational study. Developmental Psychobiology, 27, 467-487. doi:10.1002/dev.420270705
[4] Calderon, F. and Kim, H.Y. (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. Journal of Neurochemistry, 90, 979-988. doi:10.1111/j.1471-4159.2004.02520.xJNC2520
[5] Favrelere, S., Stadelmann-Ingrand, S., Huguet, F., De Javel, D., Piriou, A., Tallineau, C. and Durand, G. (2000) Age-related changes in ethanolamine glycerolphospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiology of Aging, 21, 653-660.
[6] Delion, S., Chalon, S., Guilloteau, D., Besnard, J.C. and Durand, G. (1996) α-linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. Journal of Neurochemistry, 66, 1582-1591. doi:10.1046/j.1471-4159.1996.66041582.x
[7] Soderberg, M., Edlund, C., Kristensson, K. and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 26, 421-425. doi:10.1007/BF02536067
[8] Suzuki, H., Park, S. J., Tamura, M. and Ando, S. (1998) Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mechanisms of Ageing and Development, 101, 119-128.
[9] Moriguchi, T., Greiner, R.S. and Salem, N. Jr. (2000) Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. Journal of Neurochemistry, 75, 2563-2573. doi:10.1385/JMN:16:2-3:299
[10] Gamoh, S., Hashimoto, M., Sugioka, K., Shahdat Hossain, M., Hata, N., Misawa, Y. and Masumura, S. (1999) Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience, 93, 237-241.
[11] Hashimoto, M., Tanabe, Y., Fujii, Y., Kikuta, T., Shibata, H. and Shido, O. (2005) Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. Journal of Nutrition, 135, 549-555.
[12] Taira, S., Sugiura, Y., Moritake, S., Shimma, S., Ichiyanagi, Y. and Setou, M. (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Analytical Chemistry, 80, 4761-4766. doi:10.1021/ac800081z
[13] Stoeckli, M., Chaurand, P., Hallahan, D. E. and Caprioli, R. M. (2001) Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nature Medicine, 7, 493-496. doi:10.1038/8657386573
[14] Taira, S., Ikeda, R., Yokota, N., Osaka, I., Sakamoto, M., Kato, M. and Sahashi, Y. (2010) Mass spectrometric imaging of ginsenosides localization in Panax ginseng root. The American Journal of Chinese Medicine, 38, 485-493.
[15] Nielsen, M.L., Bennett, K.L., Larsen, B., Moniatte, M. and Mann, M. (2002) Peptide end sequencing by orthogonal MALDI tandem mass spectrometry. Journal of Proteome Research, 1, 63-71. doi:10.1021/pr0155174
[16] Tanaka, K., Ido, Y., Akita, S., Yoshida, Y. and Yoshida, T. (1987) Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. Proceedings of the 2nd Japan-China Joint Symposium on Mass spectrometry, 185-187.
[17] Budzikiewicz, H. (2005) J.H. gross: Mass spectrometry. a textbook. Analytical and Bioanalytical Chemistry, 381, 1319-1320. doi:10.1007/s00216-004-3039-6
[18] Walk, T.B., Trautwein, A.W., Richter, H. and Jung, G. (1999) ESI fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS): A rapid high-resolution analytical method for combinatorial compound libraries. Angewandte Chemie International Edition, 38, 1763-1765. doi:10.1002/(SICI)1521-3773(19990614)38:12<1763::AID-ANIE1763>3.0.CO;2-#
[19] Asamoto, B. (1991) FT-ICR/MS.
[20] Lepage, G. and Roy, C.C. (1986) Direct transesterification of all classes of lipids in a one-step reaction. The Journal of Lipid Research, 27, 114-120.
[21] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265- 275.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.