Share This Article:

The general motor programmer: its specialization for speech perception & movement

Full-Text HTML XML Download Download as PDF (Size:39KB) PP. 156-158
DOI: 10.4236/wjns.2012.23024    6,744 Downloads   11,110 Views   Citations

ABSTRACT

A common neural mechanism—the General Motor Programmer—is proposed by Keane (1999) to underlie both the perception of speech and the initiation of hand movement. A proposal to investigate the specific aspect of cognitive functioning this mechanism is specialized for, namely the timing or place of articulation, is outlined.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Keane, A. (2012) The general motor programmer: its specialization for speech perception & movement. World Journal of Neuroscience, 2, 156-158. doi: 10.4236/wjns.2012.23024.

References

[1] Keane, A. M. (1999) Cerebral organization of motor programming and verbal processing as a function of degree of hand preference and familial sinistrality. Brain and Cognition, 40, 500-515. doi:10.1006/brcg.1999.1115
[2] Oldfield, R. (1971) The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9, 97-113. doi:10.1016/0028-3932(71)90067-4
[3] Morais, J. and Darwin, C.J. (1974) Ear differences for same different reaction times to monaurally presented speech. Brain and Language, 1, 383 390. doi:10.1016/0093-934X(74)90015-7
[4] Rastatter, M.P. and Gallaher, A.J. (1982) Reaction times of normal subjects to monaurally presented verbal and tonal stimuli. Neuropsychologia, 20, 465 473. doi:10.1016/0028-3932(82)90045-8
[5] Studdert-Kennedy, M. and Shankweiler, D. (1970) Hemispheric specialization for speech perception. Journal of the Acoustical Society of America, 48, 579-594. doi:10.1121/1.1912174
[6] Sheehan, E. P. and Smith, H. V. (1986) Cerebral lateralization and handedness and their effects on verbal and spatial reasoning. Neuropsychologia, 24, 531-540. doi:10.1016/0028-3932(86)90097-7
[7] Keane, A. M. (2001) Motor control of the hands: The effect of familial sinistrality. International Journal of Neuroscience, 110, 25-41. doi:10.3109/00207450108994219
[8] Keane, A. M. (2002) Direction of hand preference: The connection with speech and the influence of familial handedness. International Journal of Neuroscience, 112, 1287-1303. doi:10.1080/00207450290158205
[9] Kimura, D. (1977) Acquisition of a motor skill after left-hemisphere damage. Brain, 100, 527 542. doi:10.1093/brain/100.3.527
[10] Kimura, D. (1982) Left-hemisphere control of oral and brachial movements and their relation to communication. Philosophical Transactions of the Royal Society of London: B: Biological Sciences, 298, 135-149. doi:10.1098/rstb.1982.0077
[11] Liepmann, H. (1980) The left hemisphere and action. Research Bulletin, 506, 17-50.
[12] Bradshaw, J. L. and Nettleton, N. C. (1981) The nature of hemispheric specialization in man. Behavioral and Brain Sciences, 4, 51-91. doi:10.1017/S0140525X00007548
[13] Calvin, W. H. (1983) Timing sequencers as a foundation for language. Behavioral and Brain Sciences, 6, 210-211. doi:10.1017/S0140525X00015533
[14] Ojemann, G. A. (1984) Common cortical and thalamic mechanisms for language and motor functions. American Journal of Physiology, 246, R901-R903.
[15] Schwartz, J. and Tallal, P. (1980) Rate of acoustic change may underlie hemispheric specialization for speech perception. Science, 207, 1380-1381.
[16] Boemio, A., Fromm, S., Braun, A. and Poeppel, D. (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389-395.
[17] Brancucci, A., D’Anselmo, A., Martello, F. and Tommasi, L. (2008) Left hemisphere specialization for duration discrimination of musical and speech sounds. Neuropsychologia, 46, 2013-2019. doi :10.1016/j.neuropsychologia.2008.01.019
[18] Schirmer, A. (2004) Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21, 269-287. doi:10.1016/j.cogbrainres.2004.04.003
[19] Tallal, P. (1983) A precise timing mechanism may underlie a common speech perception and production area in the peri-Sylvian cortex of the dominant hemisphere. Behavioral and Brain Sciences, 6, 219-220. doi:10.1017/S0140525X00015636
[20] Tallal, P. and Newcombe, F. (1978) Impairment of auditory perception and language comprehension in dysphasia. Brain and Language, 5, 13-24. doi:10.1016/0093-934X(78)90003-2
[21] Watson, N. V. and Kimura, D. (1989) Right-hand superiority for throwing but not for intercepting. Neuropsychologia, 27, 1399-1414. doi:10.1016/0028-3932(89)90133-4
[22] Lomas, J. and Kimura, D. (1976) Intrahemispheric interaction between speaking and sequential manual activity. Neuropsychologia, 14, 23-33. doi.org/10.1016/0028-3932(76)90004-X
[23] McFarland, K., Ashton, R. and Jeffery C. K. (1989) Lateralized dual-task performance: The effects of spatial and muscular repositioning. Neuropsychologia, 27, 1267-1276. doi :10.1016/0028-3932(89)90039-0
[24] Mateer, C. and Kimura, D. (1977) Impairment of non-verbal oral movements in aphasia. Brain and Language, 4, 262-276. doi:10.1016/0093-934X(77)90022-0
[25] Howell, P. and Rosen, S. (1983) Natural auditory sensitivities as universal determiners of phonemic contrasts. Linguistics, 21, 205-235. doi:10.1515/ling.1983.21.1.205
[26] Wallwork, J. F. (1985) Language and linguistics. 2nd Edition, Heinemann, Oxford.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.