Share This Article:

Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma

Abstract Full-Text HTML XML Download Download as PDF (Size:381KB) PP. 850-855
DOI: 10.4236/jmp.2012.38111    3,593 Downloads   6,119 Views   Citations


The nonlinear propagation of waves (specially solitary waves) in an ultra-relativistic degenerate dense plasma (containing ultra-relativistic degenerate electrons and positrons, cold, mobile, inertial ions, and negatively charged static dust) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de-Vries equation have been derived whose numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The existence of solitary structures has been also verified by employing the pseudo-potential method. The implications of our results in astrophysical compact objects have been briefly discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Roy, M. Zobaer and A. Mamun, "Propagation of Electrostatic Waves in an Ultra-Relativistic Dense Dusty Electron-Positron-Ion Plasma," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 850-855. doi: 10.4236/jmp.2012.38111.


[1] S. Chandrasekhar, “The Density of White Dwarf Stars,” Philosophical Magazine, Vol. 11, No. 7, 1931, pp. 592- 596.
[2] S. Chandrasekhar, “The Maximum Mass of Ideal White Dwarfs,” Astrophysical Journal, Vol. 74, No. 1, 1931, pp. 81-82. doi:10.1086/143324
[3] S. Chandrasekhar, “The Highly Collapsed Configurations of a Steller Mass (Second Paper),” Monthly Notics of the Royal Astronmical Science, Vol. 170, No. 1935, 1935, pp. 226-228.
[4] D. Koester and G. Chanmugam, “Physics of White Dwarf Stars,” Report on Progress in Physics, Vol. 53, No. 7, 1990, p. 837. doi:10.1088/0034-4885/53/7/001
[5] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact - bjects,” John Wiley and Sons, New York, 1983.
[6] E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Lorén-Aguiltar, A. H. Córsico R. D. Rohrmann, M. Salaris, and J. Isern, “A White Dwarf Cooling Age of 8 Gyr for NGC 6791 from Physical Separation Process,” Nature, Vol. 465, 2010, pp. 194-196. doi:10.1038/nature09045
[7] G. Brodin and M. Marklund, “Spin Megnetohydrodynamics,” New Journal of Physics, Vol. 9, No. 8, 2007, pp. 227. doi:10.1088/1367-2630/9/8/277
[8] P. K. Shukla and B. Eliasson, “Formation and Dynamics of Dark Solitons and Vortices in Quantum ElectrPlas- mas,” Physics Review Letter, Vol. 96, No. 24, 2006, Article ID: 245001. doi:10.1103/PhysRevLett.96.245001
[9] P. K. Shukla and B. Eliasson, “Nonlinear Interactions between Electromagnetic Waves and Electron Plasma Os- cillations in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 9, 2007, Article ID: 096401. doi:10.1103/PhysRevLett.99.096401
[10] D. Shaikh and P. K.Shukla, “Fluid Turbulance in Quantum Plasmas,” Physics Review Letter, Vol. 99, No. 12, 2007, Article ID: 125002. doi:10.1103/PhysRevLett.99.125002
[11] M. Marklund and G. Brodin, “Dynamics of Spin-1/2 Quantum Plasmas,” Physics Review Letter, Vol. 98, No. 2, 2007, Article ID: 025001. doi:10.1103/PhysRevLett.98.025001
[12] P. K. Shukla, “A New Spin in Quantum Plasmas,” Nature Physics, Vol. 5, 2009, pp. 92-93. doi:10.1038/nphys1194
[13] W. Masood, B. Eiasson and P. K. Shukla, “Electromag- netic Wave Equations for Relativistically Degenerate Quan- tum Magnetoplasmas,” Physics Review E, Vol. 81, No. 6, 2010, Article ID: 066401. doi:10.1103/PhysRevE.81.066401
[14] G. Brodin and M. Marklund, “Spin Solitons in Magneized Pair Plasmas, Physics of Plasmas, Vol. 14, No. 11, 2007, Article ID: 112107. doi:10.1063/1.2793744
[15] M. Marklund, B. Eiasson and P. K. Shukla, “Magnetosonic Solitons in a Fermionic Quantum Plasma,” Phys- ics Review E, Vol. 76, No. 6, 2007, Article ID: 067401. doi:10.1103/PhysRevE.76.067401
[16] G. Manfredi, “How to Model Quantum Plasmas,” Proceedings of the Workshop on Kinetic Theory The Fields Institute Communications Series, Toronto, 29 March-2 April 2004, p. 263.
[17] F. Hass, “Variational Approach for the Quantum Zakharov System,” Physics of Plasmas, Vol. 14, No. 4, 2007, Article ID: 042309. doi:10.1063/1.2722271
[18] A. Misra and S. Samanta, “Quantum Electro Acoustic Double Layers in a Magnetoplasma,” Physics of Plasmas, Vol. 15, No. 12, 2008, Article ID: 122307. doi:10.1063/1.3040014
[19] A. P. Misra, S. Banerjee, F. Haas, P. K. Shukla and L. PG. Assis, “Temporal Dynamics in Quantum Zakharov Equa- tions for Plasmas,” Physics of Plasmas, Vol. 17, No. 3, 2010, Article ID: 032307. doi:10.1063/1.3356059
[20] S. Maxon and J. Viecelli, “Spherical Solitons,” Physics Review Letter, Vol. 32, No. 1, 1974, pp. 4-6. doi:10.1103/PhysRevLett.32.4
[21] I. B. Bernstein, J. M. Greene and M. D. Kruskal, “Exact Nonlinear Plasma Oscillations,” Physics Review Letter, Vol. 108, No. 3, 1957, p. 546.
[22] R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas,” Reviews of Plasma Physics, Vol. 4, 1966, p. 23
[23] A. A. Mamun and P. K. Shukla, “Arbitrary Amplitude Solitary Waves and Double Layers in an Ultra-Relativistic Degenerate Dense Dusty Plasma,” Physics Letter A, Vol. 374, No. 41, 2010, pp. 4238-4241. doi:10.1016/j.physleta.2010.08.038

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.