Improved Solid-Phase Peptide Synthesis of Wild-Type and Phosphorylated Phospholamban Using a Pseudoproline Dipeptide

Abstract

In this study, we report that the insertion of a pseudoproline dipeptide for the solid-phase peptide synthesis of wild-type Phospholamban protein (WT-PLB) has two important advantages. First, it disrupts the formation of different secondary structures, which is responsible for poor couplings during the preparation of highly aggregated sequences. Second, it enhances the purities and solubility of crude products leading to easier HPLC purification.

Share and Cite:

S. Abu-Baker and G. Lorigan, "Improved Solid-Phase Peptide Synthesis of Wild-Type and Phosphorylated Phospholamban Using a Pseudoproline Dipeptide," Open Journal of Synthesis Theory and Applications, Vol. 1 No. 2, 2012, pp. 9-12. doi: 10.4236/ojsta.2012.12002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. K. B. Simmerman and L. R. Jones, “Phospholamban: Protein Structure, Mechanism of Action, and Role in Car-diac Function,” Physiological Reviews, Vol. 78, No. 4, 1998, pp. 921-947.
[2] P. James, M. Inui, M. Tada, M. Chiesi and E. Carafoli, “Nature and Site of Phospholamban Regulation of the Calcium Pump of Sarcoplasmic Reticulum,” Nature, Vol. 342, 1989, pp. 90-92. doi:10.1038/342090a0
[3] M. A. Kirchberger, M. Tada and A. M. Katz, “Phos-pholamban: A Regulatory Protein of the Cardiac Sar-coplasmic Reticulum,” Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 5, 1975, pp. 103- 115.
[4] J. Fuji, A. Ueno, K. Kitano, S. Tanaka, M. Kadoma and M. Tada, “Complete Complementary DNA-Derived Amino Acid Sequence of Canine Cardiac Phospholamban,” Jour- nal of Clinical Investigation, Vol. 79, No. 1, 1987, pp. 301-304. doi:10.1172/JCI112799
[5] Q. Yao, J. L. Bevan, R. F. Weaver and D. J. Bigelow, “Purification of Porcine Phospholamban Expressed in Escherichia Coli,” Protein Expression and Purification, Vol. 8, No. 4, 1996, pp. 463-468.
[6] J. G. Collins, E. G. Kranias, A. S. Reeves, L. M. Bilezik-jian and A. Schwartz, “Isolation of Phospholamban and a Second Proteolipid Component from Canine Cardiac Sar-coplasmic Reticulum,” Biochemical and Biophysical Re-search Communications, Vol. 99, No. 3, 1981, pp. 796- 803. doi:10.1016/0006-291X(81)91235-3
[7] E. J. Mayer, E. McKenna, V. M. Garsky, C. J. Burke, H. Mach, C. R. Middaugh, M. Sardana, J. S. Smith and R.G. Johnson Jr., “Biochemical and Biophysical Comparison of Native and Chemically Synthesized Phospholamban and a Monomeric Phospholamban,” Journal of Biologyi-cal Chemistry, Vol. 271, 1996, pp. 1669-1677. doi:10.1074/jbc.271.3.1669
[8] D. J. Hirsh, J. Hammer, W. L. Maloy, J. Blazyk and J. Schaefer, “Secondary Structure and Location of a Ma-gainin Analogue in Synthetic Phospholipid Bilayers,” Biochemistry, Vol. 35, No. 39, 1996, pp. 12733-12741. doi:10.1021/bi961468a
[9] A. Mascioni, C. Karim, J. Zamoon, D. D. Thomas and G. Veglia, “Solid-State NMR and Rigid Body Molecular Dynamics to Determine Domain Orientations of Mono-meric Phospholamban,” Journal of the American Chemi-cal Society, Vol. 124, No. 32, 2002, pp. 9392-9393. doi:10.1021/ja026507m
[10] E. K. Tiburu, P. C. Dave, K. Damodaran and G. A. Lori-gan, “Investigating the Dynamic Properties of the Trans-membrane Segment of Phospholamban Incorporated into Phospholipid Bilayers Utilizing 2H and 15N Solid-State NMR Spectroscopy,” Biochemistry, Vol. 43, No. 44, 2004, pp. 13899-13909. doi:10.1021/bi0490993
[11] E. K. Tiburu, P. C. Dave, J. F. Vanlerberghe, T. B. Car- don, R. E. Minto and G. A. Lorigan, “An Improved Syn-thetic and Purification Procedure for the Hydrophobic Segment of the Transmembrane Peptide Phospholam-ban,” Analytical Biochemistry, Vol. 318, No. 1, 2003, pp. 146-151. doi:10.1016/S0003-2697(03)00141-6

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.