Estimating Vertical Distribution of Vegetation Cover in Temperate Heterogeneous Forests Using Airborne Laser Scanning Data

Abstract

Vertical structure is important for understanding forest environment, yet difficult to characterize, especially in temperate heterogeneous forests where the structure is complex. This study used data from a small-footprint airborne laser scanning (ALS) to estimate vegetation coverage in four stratum ranges in a warm temperate forest in Japan: >12 m, 8 - 12 m, 4 - 8 m, and 0 - 4 m in height. Field data were collected in 17 broad-leaved and 12 coniferous sample plots, consisting of the proportion of vegetation cover in each stratum range. The field and ALS measurements were conducted in summer, during leaf-on conditions. Using echo attributes (first, last, intermediate, and only), we calculated the vegetation coverage index (VCI) at 1-m height intervals. The cumulative sum of the VCI (CUMVCI) was then computed and compared with field observations. Linear regression analysis showed that the ALS data gave reasonable estimates of vegetation coverage in the upper two or three stratum ranges in broad-leaved stands, and in the upper two stratum ranges in coniferous stands. The model gave reproducible estimates until approximately 95% of the total returns had been applied. We conclude that ALS data can provide useful information on natural habitats in the management of warm temperate forest.

Share and Cite:

Ioki, K. , Imanishi, J. , Sasaki, T. , Song, Y. , Morimoto, Y. & Hasegawa, H. (2012). Estimating Vertical Distribution of Vegetation Cover in Temperate Heterogeneous Forests Using Airborne Laser Scanning Data. Open Journal of Forestry, 2, 89-96. doi: 10.4236/ojf.2012.23012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Axelsson, P.E. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry and Remote Sensing, 33, 110-117.
[2] Braun-Blanquet, J. (1932). Plant sociology: The study of plant communities (English translation). New York: McGraw-Hill.
[3] Brokaw, N. V. L., & Lent, R. A. (1999). Vertical structure. In I. Hunter, & L. Malcom (Eds.), Maintaining biodiversity in forest ecosystems (pp. 373-399). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511613029.013
[4] Clark, M. L., Clark, D. B., & Roberts, D. A. (2004). Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment, 91, 68-89. doi:10.1016/j.rse.2004.02.008
[5] Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., & Trofymow, J. A. (2007). Estimating canopy structure of Douglas-Fir forest stands from discrete-return LiDAR. Trees, 21, 295-310. doi:10.1007/s00468-006-0119-6
[6] Gaveau, D. L. A., & Hill, R. A. (2003). Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Canadian Journal of Remote Sensing, 29, 650657. doi:10.5589/m03-023
[7] Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar remote sensing of the canopy structure and biophysical properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 70, 339-361. doi:10.1016/S0034-4257(99)00052-8
[8] Hashimoto, H., Imanishi, J., Hagiwara, A., Morimoto, Y., & Kitada, K. (2004). Estimating forest structure indices for evaluation of forest bird habitats by an airborne laser scanner. In M. Thies, B. Koch, H. Spiecker, & H. Weinacker (Eds.), Laser scanners for forest and landscape assessment: Proceedings of the ISPRS Working Group VIII/2, Freiburg, 3-6 October 2004, 254-258.
[9] Hill, R. A., & Broughton, R. K. (2009). Mapping the understory of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 223-233. doi:10.1016/j.isprsjprs.2008.12.004
[10] Holmgren, J., & Persson, ?. (2004). Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment, 90, 415-423. doi:10.1016/S0034-4257(03)00140-8
[11] Hug, C., Ullrich, A., & Grimm, A. (2004). LITEMAPPER-5600: A waveform-digitizinglidar terrain and vegetation mapping system. Remote Sensing and Spatial Information Sciences, 36, 24-29.
[12] MacArthur, R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42, 594-598. doi:10.2307/1932254
[13] Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28, 1016-1031. doi:10.1139/x98-078
[14] Maltamo, M., Packalén, P., Yu, X., Eerik?inen, K., Hyypp?, J., & Pitk?nen, J. (2005). Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. Forest Ecology and Management, 216, 41-50. doi:10.1016/j.foreco.2005.05.034
[15] McElhinny, C., Gibbons, P., Brack, C., & Bauhus, J. (2005). Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecology and Management, 218, 1-24. doi:10.1016/j.foreco.2005.08.034
[16] Miura, N., & Jones, S. D. (2010). Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sensing of Environment, 114, 1069-1076. doi:10.1016/j.rse.2009.12.017
[17] Moffiet, T., Mengersen, K., Witte, C., King, R., & Denham, R. (2005). Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 289-309. doi:10.1016/j.isprsjprs.2005.05.002
[18] Nelson, R. (1997). Modelingforest canopy heights: The effects of canopy shape. Remote Sensing of Environment, 60, 327-334. doi:10.1016/S0034-4257(96)00214-3
[19] Nilsson, M. (1996). Estimation of tree weights and stand volume using anairborne lidar system. Remote Sensing of Environment, 56, 1-7. doi:10.1016/0034-4257(95)00224-3
[20] N?sset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80, 88-99. doi:10.1016/S0034-4257(01)00290-5
[21] N?sset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19, 164-179. doi:10.1080/02827580310019257
[22] N?sset, E., & ?kland, T. (2002). Estimating tree height and tree crownproperties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79, 105-115. doi:10.1016/S0034-4257(01)00243-7
[23] Persson, ?., S?derman, U., T?pel, J., & Ahiberg, S. (2005). Visualization and analysis of full-waveform airborne laser scanner data. Proceedings of ISPRS Workshop on Laser Scanning 2005, Enschede, 1214 September 2005, 103-108.
[24] R Development Core Team (2010). R: A language and environment forstatistical computing. Vienna: R Foundation for Statistical Computing.
[25] RIEGL LMS GmbH (2009). Full Waveform Analysis Software RiANALYZE for RIEGL Airborne Laser Scanners LMS-Q560 and LMSQ680.
[26] Shidei, T. (1974). Forest vegetation zones. In M. Numata (Eds.), The flora and vegetation of Japan (pp. 87-124). Tokyo/Amsterdam: Kodansha/Elsevier Scientific Publishing Company.
[27] Soininen, A. (2003). Terra Scan User’s Guide.
[28] Zimble, D. A., Evans, D. L., Carlson, G. C., Parker, R. C., Grado, S. C., & Gerard, P. D. (2003). Characterizing vertical forest structure using small-footprint airborne LIDAR. Remote Sensing of Environment, 87, 171-182. doi:10.1016/S0034-4257(03)00139-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.