Preparation and Characterization of Binary and Ternary Blends with Poly(Lactic Acid), Polystyrene, and Acrylonitrile-Butadiene-Styrene

Abstract

Binary and ternary blends of poly(lactic acid) (PLA), polystyrene (PS) and acrylonitrile-butadiene-styrene (ABS) were prepared using a one-step extrusion process. Rheological and mechanical properties of the prepared blends were determined. Rheological properties were studied using a capillary rheometer, shear rate, shear stress, non-Newtonian index, shear viscosity and flow activation energy were determined. Mechanical properties were studied in term of tensile properties, stress at break, strain at break, and Young’s modulus were determined. The effect of the composition on the rheological and mechanical properties was investigated. The results show that the ternary blend exhibits shear-thinning behavior over the range of the studied shear rates where the true shear viscosity of the blend decreases with increasing true shear rate, also it was found that the true viscosity of the blend decreases with increasing ABS content. The mechanical results showed that, in the most cases, the stress at break and the Young’s modulus improved by the addition of ABS.

Share and Cite:

K. Hamad, M. Kaseem and F. Deri, "Preparation and Characterization of Binary and Ternary Blends with Poly(Lactic Acid), Polystyrene, and Acrylonitrile-Butadiene-Styrene," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 405-412. doi: 10.4236/jbnb.2012.33040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Auras, B. Harte and S. Selke, “An Overview of Poly-lactides as Packaging Materials,” Macromolecular Bios-cience, Vol. 4, No. 9, 2004, pp. 835-864. doi:10.1002/mabi.200400043
[2] J. Lunt, “Larg-Scale Production, Properties and Commercial Applications of Poly Lactic Acid Polymers,” Polymer Degradation and Stability, Vol. 59, No. 1-3, 1998, pp. 145-152. doi:10.1016/S0141-3910(97)00148-1
[3] M. Huneault and H. Li, “Morphology and Properties of Compatibilized Polylactide/Thermoplastic Starch Blends,” Polymer, Vol. 48, No. 1, 2007, pp. 270-280. doi:10.1016/j.polymer.2006.11.023
[4] Y. F. Kim, et al., “Compatibilization of Immiscible Poly (L-Lactide) and Low Density Polyethylene Blends,” Fibers and Polymers, Vol. 5, No. 4, 2004, pp. 270-274. doi:10.1007/BF02875524
[5] K. S. Anderson and M. A. Hillmyer, “The Influence of Block Copolymer Micro-structure on the Toughness of Compatibilized Polylac-tide/Polyethylene Blends,” Polymer, Vol. 45, No. 26, 2004, pp. 8809-8823. doi:10.1016/j.polymer.2004.10.047
[6] H. Balakrishnan, et al., “Mechanical, Thermal, and Morphological Properties of Polylactic Acid/Linear Low Density Polyethylene Blends,” Elastic Plastic, Vol. 42, No. 3, 2010, pp. 223-239. doi:10.1177/0095244310362403
[7] G. Singh, et al., “Mechanical Properties and Morphology of Polylactide, Linear Low-Density Polyethylene, and Their Blends,” Journal of Applied Polymer Science, Vol. 118, 2010, pp. 496-502.
[8] A. Bourmaud and S. Pimbert, “Investiga-tions on Mechanical Properties of Poly(Propylene) and Poly(Lactic Acid) Reinforced by Miscanthus Fibers,” Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 9, 2008, pp. 1444-1454. doi:10.1016/j.compositesa.2008.05.023
[9] N. Reddy, D. Nama and Y. Yang, “Polylactic Acid/ Polypropylene Polyblend Fibers for Better Resistance to Degradation,” Polymer Degradation and Stability, Vol. 93, No. 1, 2008, pp. 233-241. doi:10.1016/j.polymdegradstab.2007.09.005
[10] W. T. Yoo, et al., “Effects of Compatibilizers on the Mechanical Properties and Interfacial Tension of Polypropylene and Poly(Lactic Acid) Blends,” Macromolecular Research, Vol. 18, No. 6, 2010, pp. 583-588. doi:10.1007/s13233-010-0613-y
[11] K. Hamad, M. Kaseem and F. Deri, “Rheological and Mechanical Characterization of Poly(Lactic Acid)/Polypropylene Polymer Blends,” Journal of Polymer Research, Vol. 18, No. 6, 2011, pp. 1799-1806. doi:10.1007/s10965-011-9586-6
[12] G. Biresaw and C. J. Carriere, “Interfacial Tension of Poly(Lactic Ac-id)/Polystyrene Blends,” Journal of Polymer Science Part B: Polymer Physics, Vol. 40, No. 19, 2002, pp. 2248-2258. doi:10.1002/polb.10290
[13] G. Biresaw and C. J. Carriere, “Compatibility and Mechanical Properties of Blends of Polystyrene with Biodegradable Polyesters,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 3, 2004, pp. 313-320. doi:10.1016/j.compositesa.2003.09.020
[14] A. Mohamed, et al., “Poly(Lactic Acid)/Polystyrene Bioblends Characterized by Thermogravimetric Analysis, Differential Scanning Calorimetry, and Photoacoustic Infrared Spectroscopy,” Journal of Applied Polymer Science, Vol. 106, No. 3, 2007, pp. 1689-1696. doi:10.1002/app.26783
[15] K. Hamad, et al., “Rheological and Mechanical Properties of Poly(Lactic Acid)/Polystyrene Polymer Blend,” Polymer Bulletin, Vol. 65, No. 5, 2010, pp. 509-519. doi:10.1007/s00289-010-0354-2
[16] K. Hamad, et al., “Effect of Recycling on the Rheological and Mechanical Properties of Poly(Lactic Acid)/Poly-styrene Polymer Blend,” Journal of Material Science, Vol. 46, No. 9, 2011, pp. 3013-3019. doi:10.1007/s10853-010-5179-8
[17] B. G. Girija, et al., “Thermal Degradation and Mechanical Properties of PET Blends,” Polymer Degradation and Stability, Vol. 90, No. 1, 2005, pp. 147-153.
[18] H. Chen, et al., “Non-Isothermal Crystallization of PET/ PLA Blends,” Thermochimica Acta, Vol. 492, No. 1-2, 2009, pp. 61-66. doi:10.1016/j.tca.2009.04.023
[19] J. B. Lee, et al., “Compatibilizing Effects for Improving Mechanical Properties of Biodegradable Poly(Lactic Acid) and Poly-carbonate Blends,” Polymer Degradation and Stability, Vol. 96, No. 4, 2011, pp. 553-560. doi:10.1016/j.polymdegradstab.2010.12.019
[20] G. Stoclet, et al., “Morphology, Thermal Behavior and Me-chanical Properties of Binary Blends of Compatible Bio-sourced Polymers: Polylactide/Polyamide11,” Polymer, Vol. 52, No. 6, 2011, pp. 1417-1425. doi:10.1016/j.polymer.2011.02.002
[21] Y. Li and H. Shimizu, (2009) “Improvement in Toughness of Poly(L-Lactide) (PLLA) through Reactive Blending with Acrylonitrile-Butadiene-Styrene Copolymer (ABS): Morphology and Properties,” European Polymer Journal, Vol. 45, No. 3, 2011, pp. 738-746. doi:10.1016/j.eurpolymj.2008.12.010
[22] L. C. Simoes, et al., “Mechanical Properties of Poly(Ε- Caprolactone) and Poly(Lactic Acid) Blends,” Journal of Applied Poly-mer Science, Vol. 112, No. 1, 2009, pp. 345-352. doi:10.1002/app.29425
[23] Y. Zhang, et al., “Effect of Steady Shear on the Morphology of Biodegradable Poly(Ε-Caprolactone)/Poly-lactide Blend,” Polymer Engineering & Science, Vol. 49, No. 12, 2009, pp. 2293-2300. doi:10.1002/pen.21456
[24] D. Wu, et al., “Viscoelastic Interfacial Properties of Compatibilized Poly(Ε-Caprolactone)/Polylactide Blend,” Journal of Polymer Science Part B: Polymer Physics, Vol. 48, No. 7, 2010, pp. 756-765. doi:10.1002/polb.21952
[25] T. Takayama and M. Todo, “Improvement of Impact Fracture Properties of PLA/PCL Polymer Blend Due to LTI Addition,” Journal of Materials Science, Vol. 41, No. 15, 2006, pp. 4989-4992. doi:10.1007/s10853-006-0137-1
[26] T. Takayama, et al., “Effect of LTI Content on Impact Fracture Property of PLA/PCL/LTI Polymer Blends,” Journal of Materials Science, Vol. 41, No. 15, 2006, pp. 6501-6504. doi:10.1007/s10853-006-0611-9
[27] T. Takayama, et al., “Effect of Annealing on the Mechanical Properties of PLA/PCL and PLA/PCL/LTI Polymer Blends,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, No. 3, 2011, pp. 255-260. doi:10.1016/j.jmbbm.2010.10.003
[28] J. W. Park and S. S. Im, “Phase Behavior and Morphology in Blends of Poly(L-Lactic Acid) and Poly(Butylene Succinate),” Journal of Applied Polymer Science, Vol. 86, No. 3, 2002, pp. 647-655. doi:10.1002/app.10923
[29] A. Bhatia, et al., “Compatibility of Biodegradable Poly (Lactic Acid) (PLA) and Poly(Butylenes Succinate) (PBS) Blends for Packaging Application,” Korea-Australia Rheology Journal, Vol. 19, 2007, pp. 125-131.
[30] T. Yokohara and M. Yamaguchi, “Structure and Properties for Bio-mass-Based Polyester Blends of PLA and PBS,” European Polymer Journal, Vol. 44, No. 3, 2008, pp. 677-685. doi:10.1016/j.eurpolymj.2008.01.008
[31] R. Wang, et al., “Toughening Modification of PLLA/PBS Blends via in Situ Compatibilization,” Polymer Engineering & Science, Vol. 49, No. 1, 2009, pp. 26-33. doi:10.1002/pen.21210
[32] P. Bae, et al., “Plasticizer Effect of Novel PBS Ionomer in PLA/PBS Ionomer Blends,” Macromolecular Research, Vol. 18, No. 5, 2010, pp. 463-471. doi:10.1007/s13233-010-0512-2
[33] L. Jiang, et al., “Study of Biodegradable Polylactide/ Poly(Butylene Adipate-Co-Terephthalate) Blends,” Biomacromolecules, Vol. 7, No. 1, 2006, pp. 199-207. doi:10.1021/bm050581q
[34] S. Y. Gu, et al., “Melt Rheology of Polylactide/Poly(Bu- tylene Adi-pate-Co-Terephthalate) Blends,” Carbohydrate Polymers, Vol. 74, No. 1, 2008, pp. 79-85. doi:10.1016/j.carbpol.2008.01.017
[35] F. Signori, et al., “Thermal Degradation of Poly(Lactic Acid) (PLA) and Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Their Blends Upon Melt Processing,” Polymer Degradation and Stability, Vol. 94, No. 1, 2009, pp. 74-82. doi:10.1016/j.polymdegradstab.2008.10.004
[36] H. Xiao, et al., “Crystallization Behavior of Fully Biodegradable Poly(Lactic Acid)/Poly(Butylene Adipate-Co- Terephthalate) Blends,” Journal of Applied Polymer Science, Vol. 112, No. 6, 2009, pp. 3754-3763. doi:10.1002/app.29800
[37] H. Yuan, et al., “Preparation, Characterization, and Foa- ming Behavior of Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Butylene Terephthalate) Blend,” Polymer Engineering & Science, Vol. 49, No. 5, 2009, pp. 1004-1012. doi:10.1002/pen.21287
[38] N. Zhang, et al., “Preparation and Properties of Biodegradable Poly(Lactic Ac-id)/Poly(Butylene Adipate-Co -Terephthalate) Blend with Glycidyl Methacrylate as Reactive Processing Agent,” Journal of Materials Science, Vol. 44, No. 1, 2009, pp. 250-256. doi:10.1007/s10853-008-3049-4
[39] J. T. Yeh, et al., “Compatible and Crystallization Properties of Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends,” Journal of Applied Polymer Science, Vol. 116, 2010, pp. 680-687.
[40] N. Wang, et al., “Preparation and Characterization of Thermoplastic Starch/PLA Blends by One-Step Reactive Extrusion,” Polymer International, Vol. 56, No. 11, 2007, pp. 1440-1447. doi:10.1002/pi.2302
[41] N. Wang, et al., “Influence of Citric Acid on the Properties of Glycerol-Plasticized Dry Starch (DTPS) and DTPS/Poly(Lactic Acid) Blends,” Starch, Vol. 59, No. 9, 2007, pp. 409-417. doi:10.1002/star.200700617
[42] N. Wang, et al., “Preparation and Characterization of Compatible Thermoplastic Dry Starch/Poly(Lactic Acid),” Polymer Composites, Vol. 29, No. 5, 2008, pp. 551-559. doi:10.1002/pc.20399
[43] N. Wang, et al., “Influence of Formamide and Water on the Properties of Thermoplastic Starch/Poly(Lactic Acid) Blends,” Carbohydrate Polymers, Vol. 71, No. 1, 2008, pp. 109-118. doi:10.1016/j.carbpol.2007.05.025
[44] E. Schwach, et al., “Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization,” Journal of Polymers and the Environment, Vol. 16, 2008, pp. 286- 297.
[45] M. A. Huneault and H. Li, (2011) “Effect of Chain Extension on the Properties of PLA/TPS Blends,” Journal of Applied Polymer Science, Vol. 119, 2011, pp. 2439-2448.
[46] S. Lee and J. W. Lee, “Characterization and Pro- cessing of Biodegradable Polymer Blends of Poly(Lactic Acid) with Poly(Butylene Succinate Adipate),” Korea-Australia Rheology Journal, Vol. 17, 2005, pp. 71-77.
[47] Y. Wang and J. F. Mano, (2007) “Biodegradable Poly(L- Lactic Acid)/Poly(Butylene Succinate-Co-Adipate) Blends: Miscibility, Morphology, and Thermal Behavior,” Journal of Applied Polymer Science, Vol. 105, No. 6, 2010, pp. 3204-3210. doi:10.1002/app.25049
[48] Z. Tadmor and C. G. Gogos, “Principles of Polymer Processing,” John Wiley & Sons Publishing, New York, 2006.
[49] E. B. Bagley, “End Corrections in the Capillary Flow of Polyethylene,” Journal of Applied Physics, Vol. 28, No. 5, 1957, pp. 624-627. doi:10.1063/1.1722814

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.