Characterization of Chromium in Contaminated Soil Studied by SEM, EDS,XRD and Mossbauer Spectroscopy

Abstract

Chromium is important from the environmental point of view since its behavior and toxicity properties depend on its oxidation states. The Cr(VI) concentration in wells of Buenavista, Guanajuato, Mexico, is higher than the permissible level of it for drinking water, 0.05mg/L. The objective of this research was to determine the elution of chromium with deionized water from contaminated soil samples and to determine the oxidation state of Fe, which is an element that can limit the mobility of chromium. These results will be considered in a pump and treat remediation scheme for this site. Chromium contaminated soil samples were obtained from an industrial area of Leon, Guanajuato, México. O, Na, Mg, K, Al, Si, Ca, Cr and Fe were found in the chemical analysis by EDS of the contaminated samples. In the soluble species only O, Na, S, Ca and Cr were found. The oxidation state of iron was determined by Mossbauer spectroscopy (MS) in the soil contaminated with chromium, in the soil washed with deionizer water and also in the soluble samples. CaCrO4 was found in the soluble fraction, as a single crystalline phase by XRD. MS indicated that at least two iron species were present, one insoluble and the other sparingly soluble.

Share and Cite:

L. Reyes-Gutiérrez, E. Romero-Guzmán, A. Cabral-Prieto and R. Rodríguez-Castillo, "Characterization of Chromium in Contaminated Soil Studied by SEM, EDS,XRD and Mossbauer Spectroscopy," Journal of Minerals and Materials Characterization and Engineering, Vol. 7 No. 1, 2008, pp. 59-70. doi: 10.4236/jmmce.2008.71005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] González, C. A., Neri, R., Quinónez, A. and Mendoza, J., 1980, “Posibles danos a la salud de una comunidad abierta, por sales de Cr en el ambiente: Fisiología y patología del Cr.” Sa. Púb.Méx. XXII, p. 85.
[2] Gutiérrez, R. M., Castillo, B. S. and Aguilera, E., 1989, “Chromate contamination north of México: proposal for a solution.” UNEP, Industry and Environmental, p . 51.
[3] Reyes-Gutiérrez, L. R., 1998, “Factores que controlan la dispersión de compuestos de Cr en un acuífero de conductividad hidráulica variable.” Tesis Maestría UNAM. Posgrado en Geofísica, 125 p.
[4] Villalobos, P. M., Gutiérrez, R. M., and Castillo, B. S., 1987, “A study of the factors that influence the interference of Fe(III) in the colourimetric analysis of Cr(VI) in polluted waters.” Rev. Int. de Contam. Ambient. Vol. 3, pp. 7-23.
[5] Albert, L., 1988, “Curso Básico de toxicología ambiental: Cromo.” 2a edición. Editorial LIMUSA S.A. de C. V., pp. 171-183.
[6] Bartlett, R. and Bruce, J., 1979, “Behavior of Chromium in soils: III. Oxidation.” J. Environ. Quality, Vol. 8, pp. 31-35.
[7] Grove, J. H. and Ellis, B.G., 1980, “Extractable Iron and Manganese as Related to Soil pH and Applied Chromium.” Soil Science Society of America Journal.Vol. 44, pp. 243-246.
[8] Mattuck, R. and Nikolaidis, P., 1996, “Chromium mobility in freshwater wetlands.” Journal of Contaminant Hydrology, Vol. 23, pp. 213-232.
[9] Bennett, T. A., 1997, “An in situ reactive barrier for the treatment of Cr(VI) and tricloroethylene in groundwater”, Department of Earth Sciences, University of Waterloo.
[10] Blowes, D. and Ptacek, C., 2002. 3rd Intern. Conf. on Groundwater Quality Research, in:Proceedings of the Subsurface Restoration Conf., June 21-24, Dallas Texas, p. 214.
[11] Rodríguez, R. and Armienta, A., 1995, “Groundwater chromium pollution in the Rio Turbio Valley, Mexico: Use of pollutants as chemical tracers.” Geofís. Internal., Vol. 34, pp. 417-426.
[12] Armienta, A., Rodríguez, R., Ceniceros, N., Juárez, F. and Cruz, O., 1996, “Distribution, Origin and Fate of Chromium in soils in Guanajuato, México.” Environmental Pollution, Vol. 91,pp. 391-397.
[13] Castelán, A. and Villegas, J., 1996, “Control Estratigráfico en la dispersión de Compuestos de Cromo en el Valle de León, Gto.” ESIA-IPN, México. Bachelor Degree Thesis.
[14] Thomas, G. W., 1982, “Exchangeable Cations. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties”, Second Edition. A.L. Page (editor). Agronomy, No. 9, Part 2, American Society of Agronomy, Soil Science Society of America, Madison, Wl: 159-165.
[15] Bartlett, R. J., 1991, “Chromium Cycling in Soils: Links, Gaps, and Methods.” Environmental Health Perspectives, Vol. 92, pp. 17-24.
[16] James, B. R., 1994, “Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue.” J. Environ. Quality, Vol. 23, pp. 227-233.
[17] James, B. R., 1996, “The challenge of remediation chromium-contaminated soil.” Environmental Science & Technology,Vol. 30, pp. 248A-251A.
[18] Ramos-Leal, J. A., Durazo, J. González, M. T., Ramírez, G. A., Johannesson K. H., Cortés, A., 2003, “ Producción insostenible de un campo de pozos advertida por lo coincidente de la desmineralización y la profundización del agua subterránea.” En: 1 Congreso de Las Américas Sobre Geofísica Ambiental. Instituto Panamericano de Geografía e Historia. 20 al 24 de octubre, 2003. México, D. F.
[19] Bayliss, P., Sabina, S. A., Anderson, R., Cesbron, F., 1986, A Minerals Powder Diffraction File, Databook, International Centre for Diffraction, Editorial Staff, USA.
[20] Bajda, T., 2005, “Chromatite CaCrO4 in soil polluted with electroplating effluents, Zabierzów, Poland.” Science of the Total Environment, Vol. 336, pp. 269-274.
[21] Puigdomenech, I., 2004, MEDUSA: Make Equilibrium Diagrams Using Sophisticated Algoritms. http://www.inorg.kth.se/Research/Ignasi;/Index.html.
[22] Rock, M. L., James, B. R., and Helz, G. R., 2001, “Hydrogen Peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils.” Environmental Science & Technology, Vol 35, pp. 4054-4059.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.