Photocatalytic Treatment of Microcystin-LR-Containing Wastewater Using Pt/WO 3 Nanoparticles under Simulated Solar Light

DOI: 10.4236/ojapps.2012.22011   PDF   HTML     3,815 Downloads   7,341 Views   Citations

Abstract

This study investigates the photocatalytic degradation of microcystin-LR (MC-LR) under simulated solar light using Pt modified nano-sized tungsten trioxides (Pt/WO3). Photocatalytic activity was higher during the degradation of MC-LR with Pt/WO 3 than with pure WO 3 or Ti O2 . The catalyst loading greatly affect the degradation performance. The rate of degradation is influenced by the initial pH of the reaction solution. This study also investigates the photocatalytic inactivation of cyanobacteria. The results show that the algal growth was successfully controlled by the Pt/W O 3 . This study suggests Pt/W O 3 photocatalytic oxidation with solar light is a promising treatment for water containing MC-LR.

Share and Cite:

C. Zhao, Y. Yang and Z. Zhang, "Photocatalytic Treatment of Microcystin-LR-Containing Wastewater Using Pt/WO 3 Nanoparticles under Simulated Solar Light," Open Journal of Applied Sciences, Vol. 2 No. 2, 2012, pp. 86-92. doi: 10.4236/ojapps.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Al Momani, D. W. Smith and M. G. El-Din, “Degradation of Cyanobacteria Toxin by Advanced Oxidation Processes,” Journal of Hazardous Materials, Vol. 150, No. 2, 2008, pp. 238-249. doi:10.1016/j.jhazmat.2007.04.087
[2] R. E. Honkanen, J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra and M. Dukelow, A. L. Boynton, “Characterization of Microcystin-LR, a Potent Inhibitor of Type-1 and Type-2A Protein Phosphatases,” Journal of Biological Chemistry, Vol. 265, No. 32, 1990, pp. 19401-19404.
[3] V. M. Vasconcelos and E. Pereira, “Cyanobacteria Diversity and Toxicity in a Wastewater Treatment Plant (Portugal),” Water Research, Vol. 35, No. 5, 2001, pp. 13541357. doi:10.1016/S0043-1354(00)00512-1
[4] K. Himberg, A. M. Keijola, L. Hiisvirta, H. Pyysalo and K. Sivonen, “The Effect of Water Treatment Processes on the Removal of Hepatotoxins from Microcystis and Oscillatoria Cyanobacteria: A Laboratory Study,” Water Research, Vol. 23, No. 8, 1989, pp. 979-984. doi:10.1016/0043-1354 (89)90171-1
[5] S. Takenaka and Y. Tanaka, “Behavior of Microcystins and Its Decomposition Product in Water Treatment Process,” Chemosphere, Vol. 31, No. 7, 1995, pp. 3635-3641. doi:10.1016/0045-6535(95)00212-Q
[6] C. Shifu and C. Gengyu, “Photocatalytic Degradation of Organophosphorus Pesticides Using Floating Photocatalyst TiO2?SiO2/Beads by Sunlight,” Solar Energy, Vol. 79, No. 1, 2005, pp. 1-9. doi:10.1016/j.solener.2004.10.006
[7] M. Sharon, B. Pal and D. V. Kamat, “Photocatalytic Killing of Pathogenic Bacterial Cells Using Nanosize Fe2O3 and Carbon Nanotubes,” Journal of Biomedical Nanotechnology, Vol. 1, No. 3, 2005, pp. 365-368. doi:10.1166/jbn.2005.034
[8] M. Canle, M. I. Fernandez, S. Rodriguez, J. A. Santaballa, S. Steenken and E. Vulliet, “Mechanisms of Direct and TiO2-Photocatalysed UV Degradation of phenylurea Herbicides,” Chemphyschem, Vol. 6, No. 10, 2005, pp. 20642074. doi:10.1002/cphc.200500004
[9] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara and K. Sayama, “Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation,” Journal of Physical Chemistry C, Vol. 111, No. 21, 2007, pp. 7574-7577. doi:10.1021/jp0725533
[10] M. Miyauchi, “Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles,” Physical Chemistry Chemical Physics, Vol. 10, No. 41, 2008, pp. 6258-6265. doi: 10.1039/b807426g
[11] U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C-Photochemistry Reviews, Vol. 9, No. 1, 2008, pp. 1-12. doi:10.1016/j.jphotochemrev.2007.12.003
[12] N. Genc, “Photocatalytic Oxidation of a reactive Azo Dye and Evaluation of the Biodegradability of Photocatalytically Treated and Untreated Dye,” Water SA, Vol. 30, No. 3, 2004, pp. 399-405. doi:10.4314/wsa.v30i3.5089
[13] L. A. Lawton, P. K. J. Robertson, B. Cornish and M. Jaspars, “Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO2 Photocatalytic Oxidation,” Environmental Science & Technology, Vol. 33, No. 5, 1999, pp. 771-775. doi:10.1021/es9806682
[14] I. Liu, L. A. Lawton, D. W. Bahnemann and P. K. J. Robertson, “The Photocatalytic Destruction of the Cyanotoxin, Nodularin Using TiO2,” Applied Catalysis B: Environmental, Vol. 60, No. 3-4, 2005, pp. 245-252. doi:10.1016/j.apcatb.2005.03.006
[15] Z. G. Zhao and M. Miyauchi, “Nanoporous-Walled Tungsten Oxide Nanotubes as Highly Active Visible-LightDriven Photocatalysts,” Angewandte Chemie: International Edition, Vol. 47, No. 37, 2008, pp. 7051-7055. doi:10.1002/anie.200802207
[16] R. Abe, H. Takami, N. Murakami and B. Ohtani, “Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide,” Journal of the American Chemical Society, Vol. 130, No. 25, 2008, pp. 7780-7781. doi:10.1021/ja800835q
[17] T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H Sugihara and K. Sayama, “Complete Oxidation of Acetaldehyde and Toluene over a Pd/WO3 Photocatalyst under Fluorescentor Visible-Light Irradiation,” Chemical Communications, Vol. No. 43, 2008, pp. 5565-5567.
[18] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H Sugihara and K. Sayama, “Promotion Effect of CuO Co-Catalyst on WO3-Catalyzed Photo Degradation of Organic Substances,” Catalysis Communications, Vol. 9, No. 6, 2008, pp. 1254-1258. doi:10.1016/j.catcom.2007.11.012
[19] T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, “Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders,” FEMS Microbiology Letters, Vol. 29, No. 1-2, 1985, pp. 211-214. doi:10.1111/j.1574-6968.1985.tb00864.x
[20] J. A. Ibanez, M. I. Litter and R. A. Pizarro, “Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae. Comparative Study with Other Gram (-) Bacteria,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157, No. 1, 2003, pp. 81-85.
[21] M. N. Chong, B. Jin, H. Zhu and C. Saint, “Bacterial Inactivation Kinetics, Regrowth and Synergistic Competition in a Photocatalytic Disinfection System Using Anatase Titanate Nanofiber Catalyst,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 214, No. 1, 2010, pp. 1-9. doi:10.1016/j.jphotochem.2010.05.018
[22] B. Kim, D. Kim, D. Cho and S. Cho, “Bactericidal Effect of TiO2 Photocatalyst on Selected Food-Borne Pathogenic Bacteria,” Chemosphere, Vol. 52, No. 1, 2003, pp. 277-281. doi:10.1016/S0045-6535(03)00051-1
[23] C. A. Linkous, G. J. Carter, D. B. Locuson, A. J. Ouellette, D. K. Slattery and L. A. Smitha, “Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications,” Environmental Science & Technology, Vol. 34, No. 22, 2000, pp. 4754-4758. doi:10.1021/es001080+
[24] J. R. Peller, R. L. Whitman, S. Griffith, P. Harris, C. Peller and J. Scalzitti, “TiO2 as a Photocatalyst for Control of the Aquatic Invasive Alga, Cladophora, under Natural and Artificial Light,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 186, No. 2-3, 2007, pp. 212217. doi:10.1016/j.jphotochem.2006.08.009
[25] K.-i. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, “Detection of Active Oxidative Species in TiO2 Photocatalysis Using the Fluorescence Technique,” Electrochemistry Communications, Vol. 2, No. 3, 2000, pp. 207-210. doi:10.1016/S1388-2481(00)00006-0
[26] T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara and K. Sayama, “Reaction Mechanism and Activity of WO3-Catalyzed Photodegradation of Organic Substances Promoted by a CuO Cocatalyst,” Journal of Physical Chemistry C, Vol. 113, No. 16, 2009, pp. 6602-6609. doi:10.1021/jp8111342
[27] I. Liu, L. A. Lawton and P. K. J. Robertson, “Mechanistic Studies of the Photocatalytic Oxidation of MicrocystinLR: An Investigation of Byproducts of the Decomposition Process,” Environmental Science & Technology, Vol. 37, No. 14, 2003, pp. 3214-3219. doi:10.1021/es0201855
[28] J. Kim, C. W. Lee and W. Choi, “Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light,” Environmental Science & Technology, Vol. 44, No. 17, 2010, pp. 6849-6854. doi:10.1021/es101981r
[29] Q. Xiao, Z. Si, J. Zhang, C. Xiao and X. Tan, “Photoinduced Hydroxyl Radical and Photocatalytic Activity of Samarium-Doped TiO2 Nanocrystalline,” Journal of Hazardous Materials, Vol. 150, No. 1, 2008, pp. 62-67. doi:10.1016/j.jhazmat.2007.04.045
[30] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo and V. Murugesan, “Solar Light Induced and TiO2 Assisted Degradation of Textile Dye Reactive Blue 4,” Chemosphere, Vol. 46, No. 8, 2002, pp. 1173-1181. doi:10.1016/S0045-6535(01)00284-3
[31] L. Elsellami, F. Vocanson, F. Dappozze, E. Puzenat, O. Paisse, A. Houas and C. Guillard, “Kinetic of Adsorption and of Photocatalytic Degradation of Phenylalanine Effect of pH and Light Intensity,” Applied Catalysis A: General, Vol. 380, No. 1-2, 2010, pp. 142-148. doi:10.1016/j.apcata.2010.03.054
[32] H.-C. Liang, X.-Z. Li, Y.-H. Yang and K.-H. Sze, “Effects of dissolved Oxygen, pH, and Anions on the 2,3Dichlorophenol Degradation by Photocatalytic Reaction with Anodic TiO2 Nanotube Films,” Chemosphere, Vol. 73, No. 5, 2008, pp. 805-812. doi:10.1016/j.chemosphere.2008.06.007
[33] M. G. Antoniou, J. A. Shoemaker, A. A. de la Cruz and D. D. Dionysiou, “LC/MS/MS Structure Elucidation of Reaction Intermediates Formed during the TiO2 Photocatalysis of Microcystin-LR,” Toxicon, Vol. 51, No. 6, 2008, pp. 1103-1118. doi:10.1016/j.toxicon.2008.01.018
[34] L. A. Lawton, P. K. J. Robertson, B. Cornish, I. L. Marr and M. Jaspars, “Processes Influencing Surface Interaction and Photocatalytic Destruction of Microcystins on Titanium Dioxide Photocatalysts,” Journal of Catalysis, Vol. 213, No. 1, 2003, pp. 109-113. doi:10.1016/S0021-9517(02)00049-0
[35] L. Rizzo, “Inactivation and Injury of Total Coliform Bacteria after Primary Disinfection of Drinking Water by TiO2 Photocatalysis,” Journal of Hazardous Materials, Vol. 165, No. 1-3, 2009, pp. 48-51. doi:10.1016/j.jhazmat.2008.09.068

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.