Share This Article:

Effect of Zn, Cd and Cr on growth, water status and chlorophyll content of barley plants (H. vulgare L.)

Abstract Full-Text HTML Download Download as PDF (Size:108KB) PP. 572-581
DOI: 10.4236/as.2012.34069    5,262 Downloads   8,564 Views   Citations


To evaluate the potential of barley for the phytoremediation of soils contaminated by metals, we conducted a growth chamber experiment with plants exposed to various concentrations of Zn, Cd and Cr. Growth parameters, chlorophyll content and chlorophyll fluorescence were measured at 15 and 29 days after treatment application, and the metal concentration in the aerial part of the plant, the root and the soil was also measured. In all cases, the amount of metal accumulated in the plant increased by increasing the concentration of the applied metal, and the roots accumulated more metal than did the aerial part of the plant. The amount of Cr found in the soil was significantly lower than that of Cd and Zn. The toxic effect of Zn and Cd on the plant was low, affecting growth only at the highest concentrations. For Zn and Cd at the concentrations used, the decrease in water content was 14% compared with the control and 26% for Cr. For plants treated with the highest metal concentrations, the most significant differences were found in chlorophyll content, which had the lowest values compared with the control (23% for Zn, and 42% for Cd and Cr), and in chlorophyll fluorescence (2% for Zn, 23% for Cd and 29% for Cr). These decreases occurred 29 days after applying the Zn and Cd treatments. In plants treated with Cr, the decrease occurred 15 days after treatment application. Under our experimental conditions, barley is more tolerant to Zn and Cd than to Cr.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

González, Á. , Chumillas, V. and Lobo, M. (2012) Effect of Zn, Cd and Cr on growth, water status and chlorophyll content of barley plants (H. vulgare L.). Agricultural Sciences, 3, 572-581. doi: 10.4236/as.2012.34069.


[1] McLaughlin, M.J., Parker, D.R. and Clarke J.M. (1999) Metals and micronutrients—Food safety issues. Field Crops Research, 60, 143-163. doi:10.1016/S0378-4290(98)00137-3
[2] Nascimento, C.W.A. and Xing, B. (2006) Phytoextraction: A review on enhanced metal availability and plant accumulation. Scientia Agricola, 63, 299-311. doi:10.1590/S0103-90162006000300014
[3] Chaney, R.L. (1983) Plant uptake of inorganic waste constituents. In: Parr, J.F., Marsch, P.B. and Kla, J.S., Eds., Land Treatment of Inorganic Wastes, Noyes Data, Park Ridge, 50-76.
[4] Qiu, B., Zhou, W., Xue, D., Zeng, F., Ali, S. and Zhang, G. (2010) Identification of Cr-tolerant lines in a rice (Oryza sativa) DH population. Euphytica, 174, 199-207. doi:10.1007/s10681-009-0115-1
[5] Roosens, N., Ver-bruggen, N., Meerts, P. , Ximénez-Embún, P. and Smith, J.A.C. (2003) Natural variation in cad- mium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell and Environment, 26, 1657-1672. doi:10.1046/j.1365-3040.2003.01084.x
[6] McGrath, S.P., Zhao, F.J. and Lombi, E. (2002) Phytore mediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1-56. doi:10.1016/S0065-2113(02)75002-5
[7] Kr?mer, U. (2010) Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol., 61, 517-534. doi:10.1146/annurev-arplant-042809-112156
[8] Hall, J.L. (2001) Cellular mechanisms for heavy metal detox-ification and tolerance. Journal of Experimental Botany, 53, 1-11. doi:10.1093/jexbot/53.366.1
[9] Grant, C.A., Clarke, J.M., Duguid, S.D. and Chaney, R.L. (2008) Selection and breeding of plant cultivars to minimize cad-mium accumulation. Science of the Total Environment, 390, 301-310. doi:10.1016/j.scitotenv.2007.10.038
[10] Clarke, J.M., Norvell, W.A., Clarke, F.R. and Buckley, W.T. (2002) Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Canadian Journal of Plant Science, 82, 27-33.
[11] Ueno, D., Koyama, E., Yamaji, N. and Ma, J.F. (2011) Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Journal of Experimental Botany, 62, 2265-2272. doi:10.1093/jxb/erq383
[12] Zhang, X., Zhang, G., Guo, L., Wang, H., Zeng, D., Dong, G., Qian, Q. and Xue, D. (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica, 180, 173-179. doi:10.1007/s10681-011-0346-9
[13] Vallee, BL and Auld, DS (1990) Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry, 29, 5647-5659. doi:10.1021/bi00476a001
[14] Yang, Y., Sun, Ch., Yao, Y., Zhang, Y. and Achal, V. (2011) Growth and physiological responses of grape (Vitis vinifera ‘‘Combier’’) to excess zinc. Acta Physiol Plant, 33, 1483-1491. doi:10.1007/s11738-010-0687-3
[15] Wójcik, M., Skórzynska-Polit, E. and Tukiendorf, A. (2006) Organic acids accumulation and antoxidant enzyme ac- tivities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation, 48, 145-155. doi:10.1007/s10725-005-5816-4
[16] Morina, F., Jova-novic, L., Mojovic, M., Vidovic, M., Pankovic, D. and Jovanovic, S.V. (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiologia Plantarum, 140, 209-224.
[17] Grant, C.A., Buckley, W.T., Bailey, L.D. and Selles, F. (1998) Cadmium accumulation in crops. Canadian Journal of Plant Science, 78, 1-17. doi:10.4141/P96-100
[18] Adriano, D. (2001) Cadmium. In: Adriano, D.C., Ed., Trace Elements in Terrestrial Environments: Biogeochemistry, Biavailability and Risks of Metals. Springer-Verlag, New York, 264-314.
[19] Cabala, R., Slováková, L., El Zohri, M. and Frank, H. (2011) Accumulation and translocation of Cd metal and the Cd-induced production of glutathione and phytoche- latins in Vicia faba L. Acta Physiol Plant, 33, 1239-1248. doi:10.1007/s11738-010-0653-0
[20] Martins, L.L., Mourato, M.P., Cardoso, A.I., Pinto, A.P., Mota, A.M., Goncalves, M.L.S. and de Varennes, A. (2011) Oxidative stress induced by cadmium in Nicotiana ta- bacum L.: Effects on growth parameters, oxidative dam- age and an-tioxidant responses in different plant parts. Acta Physi-ologiae Plantarum, 33, 1375-1383. doi:10.1007/s11738-010-0671-y
[21] Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q. and Cao, W. (2010) Cadmium stress in wheat seedlings: Growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 32, 365-373. doi:10.1007/s11738-009-0414-0
[22] Cervantes, C., Campos-García, J., Devars, S., Gutiérrez- Corona, F., Loza-Tavera, H., Torres-Guzmán, J.C. and More-no-Sánchez R. (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335-347. doi:10.1111/j.1574-6976.2001.tb00581.x
[23] Zayed, A.M. and Terry, N. (2003) Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139-156. doi:10.1023/A:1022504826342
[24] Vajpayee, P., Tripa-thi, R.D., Rai, U.N., Ali, M.B. and Singh, S.N. (2000) Chromium (VI) accumulation reduces chlorophyll bio-synthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075-1082. doi:10.1016/S0045-6535(99)00426-9
[25] Vernay, P., Gauthier-Moussard, C. and Hitmi, A. (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563-1575. doi:10.1016/j.chemosphere.2007.02.052
[26] Gangwar, S., Singh, V.P., Srivastava, P.K. and Maurya, J.N. (2011) Modification of chromium (VI) phytotoxicity by ex-ogenous gibberellic acid application in Pisum sati- vum (L.) seedlings. Acta Physiologiae Plantarum, 33, 1385-1397. doi:10.1007/s11738-010-0672-x
[27] Zadoks, J.C., Chang, T.T. and Kozank, C.F. (1974) A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. doi:10.1111/j.1365-3180.1974.tb01084.x
[28] González, A. (2009) Aplicación del medidor portátil de clorofila en programas de mejora de trigo y cebada. Agroecología, 4, 111-116.
[29] Nocito, F.F., Lancilli, C., Dendena, B. and Lucchini, G. (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translo-cation. Plant, Cell and Environment, 34, 994-1008. doi:10.1111/j.1365-3040.2011.02299.x
[30] Vassilev, A., Yordanov, I. and Tsonev, T. (1997) Effects of Cd2+ on the physiological state and photosynthetic activeity of young barley plants. Photosynthetica, 34, 293-302. doi:10.1023/A:1006805010560
[31] Vassilev, A., Lidon, F., Scotti, P., Graca, M. and Yordanov, I. (2004) Cad-mium-induced changes in chloroplast lipids and photo-system activities in barley plants. Biologia Plantarum, 48, 153-156. doi:10.1023/B:BIOP.0000024295.27419.89
[32] Haag-Kerwer, A., Sch?fer, H.J., Heiss, S., Walter, C. and Rausch, T. (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50, 1827-1835

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.