Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Light

Abstract

Hydrogels are highly water-absorbent hydrophilic polymer networks, which show potential in many biocompatible applications. In previous work, we demonstrated the feasibility of using poly(ethylene glycol) dimethacrylate (PEG-DMA) gels polymerized with a photoinitiator for encapsulation and stabilization of painted biomimetic membrane arrays for novel separation technologies or biosensor applications. These gels were formed from PEG-DMA monomers suspended in phosphate buffered saline (PBS) solution and gelated by radical polymerization in the presence of the photoinitiator Darocur 1173. In this work, we show that the properties of a PEG-DMA hydrogel formed by photoinitiated polymerizetion can be tailored by varying the photocrosslinking time. Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (RS) showed that the optimal crosslinking time for the gel was 6 - 10 minutes and that the water content of the gels could be tuned in the range of 50 - 90 wt%. The resistivity was between 0.8 - 3.5 Ωm, which is comparable to that of PBS. The low resistivity of the gel makes it compatible for encapsulating membranes for (ion channel based) biosensor applications. With FTIR and RS we identified spectral features of the hydrogel, which may serve as a diagnostic tool to monitor changes in the gels due to variation in parameters such as time, pH, temperature, aging or exposure to chemicals or biological material.

Share and Cite:

S. Bäckström, J. Benavente, R. W. Berg, K. Stibius, M. S. Larsen, H. Bohr and C. Hélix-Nielsen, "Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Light," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 425-431. doi: 10.4236/msa.2012.36060.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. S. Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, Vol. 54, No. 1, 2002, pp. 3-12. doi:10.1016/S0169-409X(01)00239-3
[2] N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward and J. Zhang, “Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology,” Annual Review of Biomedical Engineering, Vol. 2, 2000, pp. 9-29.
[3] N. A. Peppas, P. Bures, W. Leobandung and H. Ichikawa, “Hydrogels in Pharmaceutical Formulations,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 50, No. 1, 2000, pp. 27-46. doi:10.1016/S0939-6411(00)00090-4
[4] S. Tanaka, A. Ogura, T. Kaneko, Y. Murata and M. Akashi, “Adhesion Behavior of Peritoneal Cells on the Surface of Self-Assembled Triblock Copolymer Hydrogels,” Biomacromolecules, Vol. 5, No. 6, 2004, pp. 2447-2455. doi:10.1021/bm049653o
[5] M. Tanaka, M. Tutus, S. Kaufmann, F. F. Rossetti, E. Schneck and I. M. Weiss, “Native Supported Membranes on Planar Polymer Supports and Micro-Particle Supports,” Journal of Structural Biology, Vol. 168, No. 1, 2009, pp. 137-142. doi:10.1016/j.jsb.2009.05.008
[6] M. Tanaka and E. Sackmann, “Supported Membranes as Biofunctional Interfaces and Smart Biosensor Platforms,” Physica Status Solidi A, Vol. 203, No. 14, 2006, pp. 3452-3462. doi:10.1002/pssa.200622464
[7] J. L. Drury and D. J. Mooney, “Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications,” Biomaterials, Vol. 24, No. 24, 2003, pp. 4337-4351. doi:10.1016/S0142-9612(03)00340-5
[8] G. M. Cruise, O. D. Hegre, F. V. Lamberti, S. R. Hager, R. Hill, D. S. Scharp and J. A. Hubbell, “In vitro and in Vivo Performance of Porcine Islets Encapsulated in Interfacially Photopolymerized Poly(Ethylene Glycol) Diacrylate Membranes,” Cell Transplantation, 1999, Vol. 8, No. 3, pp. 293-306.
[9] J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan, R. Langer, “Photoencapsulation of Chondrocytes in Poly (Ethylene Oxide)-Based Semi-Interpenetrating Networks. Journal of Biomedical Materials Research, Vol. 51, No. 2, 2000, pp. 164-171. doi:10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.0.CO;2-W
[10] S. Ibragimova, K. B. Stibius, P. Szewczykowski, M. Perry, H. Bohr and C. H. Nielsen, “Hydrogels for in situ Encapsulation of Biomimetic Membrane Arrays,” Polymers for Advanced Technologies, Vol. 23, No. 2, 2012, pp. 182-189. doi:10.1002/pat.1850
[11] T. J. Jeon, N. Malmstadt and J. J. Schmidt, “HydrogelEncapsulated Lipid Membranes,” Journal of the American Chemical Society, Vol. 128, No. 1, 2006,pp. 42-43. doi:10.1021/ja056901v
[12] C. H. Nielsen, “Biomimetic Membranes for Sensor and Separation Applications,” Anal Bioanal Chem, Vol. 395, No. 3, 2009, pp. 697-718. doi:10.1007/s00216-009-2960-0
[13] J. S. Hansen, M. Perry, J. Vogel, J. S. Groth, T. Vissing, M. S. Larsen, O. Geschke, J. Emneus, H. Bohr and C. H. Nielsen, “Large Scale Biomimetic Membrane Arrays,” Analytical and Bioanalytical Chemistry, Vol. 395, No. 3, 2009, pp. 719-727. doi:10.1007/s00216-009-3010-7
[14] J. S. Hansen, M. Perry, J. Vogel, T. Vissing, C. R. Hansen, O. Geschke, J. Emneus and C. H. Nielsen, “Development of an Automation Technique for the Establishment of Functional Lipid Bilayer Arrays,” Journal of Micromechanics and Microengineering, Vol. 19, No. 2, 2009, Article ID: 025014. doi:10.1088/0960-1317/19/2/025014
[15] J. Vogel, M. Perry, J. S. Hansen, P. Y. Bolinger, C. H. Nielsen and O. Geschke, “A Support Structure for Biomimetic Applications,” Journal of Micromechanics and Microengineering, Vol. 19, No. 2, 2009, Article ID: 025026. doi:10.1088/0960-1317/19/2/025026
[16] L. Pelaez, V. Romero, S. Escalera, S. Ibragimova, K. Stibius, J. Benavente and C. H. Nielsen, “Electrochemical Characterization of Hydrogels for Biomimetic Applications,” Polymers for Advanced Technologies, Vol. 22, No. 9, 2011, pp. 1381-1388. doi:10.1002/pat.2028
[17] Y. H. Wu, H. B. Park, T. Kai, B. D. Freeman and D. S. Kalika, “Water Uptake, Transport and Structure Characterization in Poly(Ethylene Glycol) Diacrylate Hydrogels,” Journal of Membrane Science, Vol. 347, No. 1-2, 2010, pp. 197-208. doi:10.1016/j.memsci.2009.10.025
[18] D. Myung, D. Waters, M. Wiseman, P. E. Duhamel, J. Noolandi, C. N. Ta and C. W. Frank, “Progress in the Development of Interpenetrating Polymer Network Hydrogels,” Polymers for Advanced Technologies, Vol. 19, No. 6, 2008, pp. 647-657. doi:10.1002/pat.1134
[19] L. Jensen, P. M. Mortensen, R. Trane, P. Harris and R. W. Berg, “Reaction Kinetics of Acetone Peroxide Formation and Structure Investigations Using Raman Spectroscopy and X-Ray Diffraction,” Applied Spectroscopy, Vol. 63, No. 1, 2009, pp. 92-97. doi:10.1366/000370209787169687
[20] J. Benavente, M. I. Vázquez, J. Hierrezuelo, R. Rico, J. M. López-Romero and M. R. López-Ramirez, “Modification of a Regenerated Cellulose Membrane with Lipid Nanoparticles and Layers. Nanoparticle Preparation, Morphological and Physicochemical Characterization of Nanoparticles and Modified Membranes,” Journal of Membrane Science, Vol. 355, No. 1-2, 2010, pp. 45-52. doi:10.1016/j.memsci.2010.03.004
[21] F. M. Andreopoulos, E. J. Beckman and A. J. Russell, “Light-Induced Tailoring of PEG-Hydrogel Properties,” Biomaterials, Vol. 19, No. 15, 1998, pp. 1343-1352. doi:10.1016/S0142-9612(97)00219-6
[22] M. Ladd, “Introduction to Physical Chemistry,” 3rd Edition, Cambridge University Press, Cambridge, 1998.
[23] K. Y. Suh, J. Seong, A. Khademhosseini, P. E. Laibinis and R. Langer, “A Simple Soft Lithographic Route to Fabrication of Poly(Ethylene Glycol) Microstructures for Protein and Cell Patterning,” Biomaterials, Vol. 25, No. 3, 2004, pp. 557-563. doi:10.1016/S0142-9612(03)00543-X
[24] W. A. Green, “Industrial Photoinitiators,” CRC Press, Boca Raton, 2010.
[25] V. Krishnakumar and R. Mathammal, “Density Functional and Experimental Studies on the FT-IR and FTRaman Spectra and Structure of Benzoic Acid and 3,5Dichloro Salicylic Acid,” Journal of Raman Spectroscopy, Vol. 40, No. 3, 2009, 264-271. doi:10.1002/jrs.2118
[26] K. Asaka, “Dielectric-Properties of Cellulose-Acetate Reverse-Osmosis Membranes in Aqueous Salt-Solutions,” Journal of Membrane Science, Vol. 50, No. 1, 1990, pp. 71-84. doi:10.1016/S0376-7388(00)80887-X
[27] J. Benavente, “Surface Electrical Phenomena in Membranes and Microchannels,” Transworld Research Network, Kerala, 2008.
[28] B. A. Boukamp, “A Package for Impedance Admittance Data-Analysis,” Solid State Ionics, Vol. 18-19, 1986, pp. 136-140. doi:10.1016/0167-2738(86)90100-1
[29] R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis, “De-Gassed Water Is a Better Cleaning Agent,” Journal of Physical Chemistry B, Vol. 109, No. 3, 2005, pp. 1231-1238. doi:10.1021/jp045975a

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.