Some Remarks on the Physicalist Account of Mathematics

DOI: 10.4236/ojpp.2012.22025   PDF   HTML     3,340 Downloads   5,198 Views  

Abstract

The paper comments on a rather uncommon approach to mathematics called physicalist formalism. According to this view, the formal systems mathematicians concern with are nothing more and nothing less than genuine physical systems. I give a brief review on the main theses, then I provide some arguments, concerning mostly with the practice of mathematics and the uniqueness of formal systems, aiming to show the implausibility of this radical view.

Share and Cite:

Csatari, F. (2012). Some Remarks on the Physicalist Account of Mathematics. Open Journal of Philosophy, 2, 165-170. doi: 10.4236/ojpp.2012.22025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Illinois Journal of Mathematics, 21, 439-567.
[2] Ayer, A. J. (1936). Language, truth, and logic. London: Gollancz.
[3] Bishop, E. (1975). The crises in contemporary mathematics. Historia Mathematica, 2, 505-517. doi:10.1016/0315-0860(75)90113-5
[4] G?del, K. (1944). Russell’s mathematical logic. In P. Benacerraf, & H. Putnam (Eds.), Philosophy of mathematics (2nd ed., pp. 447-469). Cambridge: Cambridge University Press.
[5] Hilbert, D. (1926). über das unendliche. Mathematische Annalen, 95, 161-190. doi:10.1007/BF01206605
[6] Leacock, S. (1911). Gertrude the governess or simple seventeen. In: J. Lane (Ed.), Nonsense Novels (New ed.), London: New York Review Book.
[7] Lewis, D. (1993). Mathematics is megethology. Philosophia Mathematica, 3, 3-23. doi:10.1093/philmat/1.1.3
[8] Shapiro, S. (2000). Philosophy of mathematics. Oxford: Oxford Universit Press. doi:10.1093/0195139305.001.0001
[9] Russell, B. (1912). The problems of philosophy. London: Williams and Norgate.
[10] Szabó, L. E. (2003). Formal systems as physical objects: A physicalist account of mathematical truth. International Studies in the Philosophy of Science, 17, 117-125. doi:10.1080/0269859031000160568
[11] Szabó, L. E. (2009). How can physics account for mathematical truth? Preprint, URL (last checked 26 January 2012). http://philsci-archive.pitt.edu/archive/00005338/
[12] Szabó, L. E. (2010). Lecture notes, philosophy of mathematics. Budapest: E?tv?s Universty.
[13] Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76, 57-83. doi:10.2307/2025976
[14] Wiles, A. (1995). Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551. doi:10.2307/2118559

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.