Modeling and Current Programmed Control of a Bidirectional Full Bridge DC-DC Converter

Abstract

Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response; moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.

Share and Cite:

S. Moghaddam, A. Ayatollahi and A. Rahmati, "Modeling and Current Programmed Control of a Bidirectional Full Bridge DC-DC Converter," Energy and Power Engineering, Vol. 4 No. 3, 2012, pp. 107-116. doi: 10.4236/epe.2012.43015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Mishima, E. Hiraki, T. Tanaka and M. Nakaoka, “A New Soft-Switched Bidirectional DC-DC Converter Topology for Automotive High Voltage DC Bus Architectures,” IEEE Vehicle Power and Propulsion Conference, Windsor, 6-8 September, 2006, pp. 1-6. doi:10.1109/VPPC.2006.364281
[2] A. Edith Navarro, P. Perol, Enrique, J. Dede and F. Javier, Hurtado, “A New Efficiency Low Mass Bidirectional Battery Discharger-Charger Regulator for Low Voltage Batteries”, 27th Annual IEEE Power Electronics Specialists Conference, Baveno, 23-27 June 1996, pp. 842-845. doi:10.1109/PESC.1996.548679
[3] E.-S Kim, K.-Y Joe, H.-Y Choi, Y.-H Kim and Y.-H Cho, “An Improved Soft Switching Bi-Directional PSPWM FB DC/DC Converter,” Proceedings of the 24th Annual Conference of Industrial Electronics Society, Aachen, 31 August-4 September1998, pp. 740-743. doi:10.1109/IECON.1998.724185
[4] H. L Chan, K. W. E. Cheng and D. Suatanto, “A Novel Square-Wave Converter with Bidirectional Power Flow,” Proceedings of the International Conference on Power Electronics and Drive Systems, Hohg Kong, 27-29 July 1999, pp. 966-971. doi:10.1109/PEDS.1999.792839
[5] M. Jain, P. K. Jain and M. Daniele, “Analysis of A Bidirectional DC-DC Converter Topology for Low Power Application,” IEEE Canadian Conference on Electrical and Computer Engineering, St. Johns, 25-28 May 1997, pp. 548-551. doi:10.1109/CCECE.1997.608283
[6] K. Venkatesan, “Current Mode Controlled Bideirectional Flyback Converter,” 20th Annual IEEE Power Electronics Specialists Conference, Milwaukee, 26-29 June 1989, pp. 835-842. doi:10.1109/PESC.1989.48567
[7] T. Reimann, S. Szeponik, G. Berger and J. Petzoldt, “A Novel Control Principle of Bidirectional DC-DC Power Conversion,” 28th Annual IEEE Power Electronics Specialists Conference, St. Louis, 22-27 June 1997, pp. 978-984. doi:10.1109/PESC.1997.616843
[8] M. K. Kazimierczuk,D. Q. Vuong, B. T. Nguyen and J. A. Weimer, “Topologies of Bidirectional PWM DC-DC Power Converter,” Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, 24-28 May 1993, pp. 435-441. doi:10.1109/NAECON.1993.290953
[9] N. M. L. Tan, T. Abe and H. Akagi, “Topology and Application of Bidirectional Isolated DC-DC Converters,” IEEE 8th International Conference on Power Elec- tronics and ECCE Asia, Jeju, 30 May-3 June 2011, pp. 1039-1046. doi:10.1109/ICPE.2011.5944690
[10] R. W. Erickson and D. Maksimovic, “Fundamental of Power Electronics,” 2nd Edition, Kluwer Academic Publishers, Alphen aan den Rijn, 2001.
[11] T. Mishima, E. Hiraki, T. Tanaka and M. Nakaoka, “High Frequency Link Symmetrical Active Edge Resonant Snubbers-Assisted ZCS-PWM DC-DC Converter,” Electric Power Applications, Vol. 1, No. 6, 2007, pp. 907- 914. doi:10.1049/iet-epa:20060508
[12] C. Zhao, S. D. Round and J. W. Kolar, “Full-Order Averaging Modeling of Zero-Voltage Switching Phase-Shift Bidirectional DC-DC Converters,” Power Electronics, Vol. 3, No. 3, 2010, pp. 400-410. doi:10.1049/iet-pel.2008.0208
[13] F. Krismer and J. W. Kolar, “Accurate Small-Signal Model for the Digital Control of an Automotive Bidirectional Dual Active Bridge,” IEEE Transactions on Power Electronics, Vol. 24, No. 12, 2009, pp. 2756-2768. doi:10.1109/TPEL.2009.2027904
[14] P. Jain and J. E. Quaicoe, “Generalized Modeling of Constant Frequency DC/DC Resonant Converter Topologies,” 14th International Telecommunications Energy Conference, Washington DC, 4-8 October 1992, pp. 180-185. doi:10.1109/INTLEC.1992.268444
[15] L. A. Aguirre, P. F. Donoso-Garcia and R. Santos-Filho, “Use of a Priori Information in the Identification of Global Nonlinear Models—A Case Study Using a Buck Converter,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 7, 2000, pp. 1081-1085. doi:10.1109/81.855463
[16] K. T. Chau and C. C. Chan, “Nonlinear Identification of Power Electronics Systems,” Proceedings of International Conference on Power Electronics and Drive Systems, Singapore, 21-24 February 1995, pp. 329-334. doi:10.1109/PEDS.1995.404900
[17] F. Alonge, F. D’Ippolito, F. M. Raimondi and S. Tumminaro, “Nonlinear Modeling of DC/DC Converters Using the Hammerstein’s Approach,” IEEE Transactions on Power Electronics, Vol. 22, No. 4, 2007, pp. 1210-1221. doi:10.1109/TPEL.2007.900551
[18] F. Alonge, F. D’Ippolito and T. Cangemi, “Hammerstein Model-Based Robust Control of DC/DC Converters,” 7th International Conference on Power Electronics and Drive Systems, Bangkok, 27-30 November 2007, pp. 754-762. doi:10.1109/PEDS.2007.4487788
[19] V. Vorperian, R. Tymerski and F. C. Lee, “Equivalent Circuit Model for Resonant and PWM Switches,” IEEE Transactions on Power Electronics, Vol. 4, No. 2, 1989, pp. 205-214. doi:10.1109/63.24905
[20] V. Vorperian, “Simplified Analysis of PWM Converter Using the Model of the PWM Switch: part I and II,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 3, 1990, pp. 497-505. doi:10.1109/7.106127
[21] R. D. Middlebrook and S. Cuk, “A General Unified Approach to Modeling Switching Converter Power Stages,” International Journal of Electronics, Vol. 42, No. 6, 1977, pp. 521-550. doi:10.1080/00207217708900678
[22] S.-P. Hsu, A. Brown, L. Rensink and R. D. Middle-Brook, “Modeling and Analysis of Switching DC-to-DC Converters in Constant-Frequency Current Programmed Mode”, Power Electronics Specialists Conference, San Diego, 18-22 June 1979, pp. 284-301.
[23] S. Cuk, “Modeling, Analysis, and Design of Switching Converters,” Ph.D. Thesis, California Institute of Technology, Pasadena, 1976.
[24] L. Zhu, “A Novel Soft-Commutating Isolated Boost Full-Bridge ZVS-PWM DC-DC Converter for Bidirectional High Power Applications,” IEEE Transactions on Power Electronics, Vol. 21, No. 2, 2004, pp. 422-429. doi:10.1109/TPEL.2005.869730
[25] R. Li , A. Pottharst, N. Frohleke and J. Bocker, “Analysis and Design of Improved Isolated Full-Bridge Bidirectional DC-DC Converter,” 35th Annual Power Electronics Specialists Conference, Aachen, 20-25 June 2004, pp. 521- 526. doi:10.1109/PESC.2004.1355801
[26] R. B. Ridley, “A New, Continuous-Time Model for Current Mode Control,” IEEE Transactions on Power Elec- tronics, Vol. 6, No. 2, 1991, pp. 271-280. doi:10.1109/63.76813
[27] L. Peng, B. Lehman, “A Design Method for Paralleling Current Mode Controlled DC-DC Converters,” IEEE Transactions on Power Electronics, Vol. 19, No. 3, 2004, pp 748-756. doi:10.1109/TPEL.2004.826497
[28] R. Sheehan, “Understanding and Applying Current-Mode Control Theory,” Power Electronics Technology Exhibition and Conference, Dallas, 30 October-1 November,2007, pp. 1-26.
[29] D. E. Seborg, T. F. Edgar and D. A. Millichamp, “Process Dynamics and Control,” 2nd Edition, John Wiley and Sons Inc., New York, 2004.
[30] L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Application Note, No. 3, pp. 356-369.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.