Share This Article:

"universe collapse model" and its roles in the unification of four fundamental forces and the origin and the evolution of the universe

Abstract Full-Text HTML XML Download Download as PDF (Size:80KB) PP. 199-203
DOI: 10.4236/ns.2012.44030    4,552 Downloads   7,498 Views   Citations
Author(s)    Leave a comment


To unify the four known fundamental forces and provide an explanation for the origin and the evolution of the universe are two long-term goals of theoretical physics. Here a “universe collapse model” has been proposed. The universe consists of Matter and No-matter. No-matter is the universal energy that constructs a consistent universe field, presenting a spiral wave motion at the speed of light at the small scale. The partial collapse of the universal energy forms the particles of the universal energy in a variety of sizes, which are called as the elementary particles. These elementary particles form atom and matter, which construct the galaxies. The collapse of the universe field induces the formation of the universe collapse potential (UCP) and universe collapse force (UCF), and the later is represented by four different aspects of the fundamental forces at the large or small scales. The mathematical equation and the derivation of UCP and UCF are described, and possible experimental tests are also suggested. Therefore, this new model may give a novel explanation for the unification of four fundamental forces and the origin and the evolution of the universe.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Dai, J. (2012) "universe collapse model" and its roles in the unification of four fundamental forces and the origin and the evolution of the universe. Natural Science, 4, 199-203. doi: 10.4236/ns.2012.44030.


[1] Glashow, S.L. (1961) Partial-symmetries of weak interactions. Nuclear Physics, 22, 579-588. doi:10.1016/0029-5582(61)90469-2
[2] Weinberg, S.A. (1967) Model of leptons. Physical Review Letters, 19, 1264-1266. doi:10.1103/PhysRevLett.19.1264
[3] Englert, F. and Brout, R. (1964) Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13, 321-323. doi:10.1103/PhysRevLett.13.321
[4] Higgs, P.W. (1964) Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13, 508-509. doi:10.1103/PhysRevLett.13.508
[5] Guralnik, G.S., Hagen, C.R. and Kibble, T.W.B. (1964) Global conservation laws and massless particles. Physical Review Letters, 13, 585-587. doi:10.1103/PhysRevLett.13.585
[6] Hasert, F.J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D, et al. (1973) Search for elastic muon-neutrino electron scattering. Physics Letters B, 46, 121-124. doi:10.1016/0370-2693(73)90494-2
[7] Hasert,F.J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D, et al. (1973) Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Physics Letters B, 46, 138-140. doi:10.1016/0370-2693(73)90499-1
[8] Hasert, F.J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D, et al. (1973) Observation of neutrino-like interacttions without muon or electron in the Gargamelle neutrino experiment. Nuclear Physics B, 73, 1-22. doi:10.1016/0550-3213(74)90038-8
[9] Weinberg, S. (2004) The making of the standard model. European Physical Journal C, 34, 5-13. doi:10.1140/epjc/s2004-01761-1
[10] T’Hooft, G. (2007) The making of the Standard Model. Nature, 446, 271-273. doi:10.1038/446271a
[11] Waldrop, M.M. (2011) Unification+150, Nature, 471, 286- 288. doi:10.1038/471286a
[12] Collision Course. (2011) What will scientists do if they fail to find the Higgs boson? Nature, 479, 6.
[13] Brumfiel, G. (2011) Higgs hunt enters endgame. Nature, 479, 456-457. doi:10.1038/479456a
[14] Green, M.B., Schwarz, J.H. and Witten, E. (1987) Superstring theory. Cambridge University Press, Cambridge.
[15] Polchinski, J. (1998) String theory. Cambridge University Press, Cambridge.
[16] Becker, K., Becker, M. and Schwarz, J.H. (2007) String theory and M-theory: A modern introduction. Cambridge University Press, Cambridge.
[17] Kiritsis, E. (2007) String theory in a nutshell. Princeton University Press, Princeton.
[18] Brumfiel, G. (2006) Our universe: Outrageous fortune. Nature, 439, 10-12. doi:10.1038/439010a
[19] Berman, D.S. (2008) M-theory branes and their interacttions. Physics Reports, 456, 89-126. doi:10.1016/j.physrep.2007.10.002
[20] Damour, T. and Nicolai, H. (2008) Symmetries, singularities and the De-Emergence of space. International Journal of Modern Physics D, 17, 525-531. doi:10.1142/S0218271808012206
[21] Berkooz, M., and Reichmann, D. (2007) A Short review of time dependent solutions and space-like singularities in string theory. arXiv:0705.2146 [hep-th].
[22] Rozali, M. (2008) Comments on background independence and gauge redundancies. arXiv:0809.3962
[23] Abdo, A., et al. (2009) A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 462, 331-334. doi:10.1038/nature08574
[24] Peebles, P.J.E., Schramm, D. N., Turner E. L. and Kron, R. G. (1991) The case for the relativistic hot big bang cosmology. Nature, 352, 769-776. doi:10.1038/352769a0
[25] Khoury, J., Ovrut, B.A., Steinhardt P.J. and Turok, N. (2001) Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Physical Review D, 64, 123522. doi:10.1103/PhysRevD.64.123522
[26] Chung, D.J.H. and Freese, K. (2000) Cosmological challenges in theories with extra dimensions and remarks on the horizon problem. Physical Review D, 61, 2351.
[27] Turner, M.S. and Weinberg, E.J. (1997) Pre-big-bang inflation requires fine-tuning. Physical Review D, 56, 4604- 4609. doi:10.1103/PhysRevD.56.4604
[28] Gott, J.R. (1982) Creation of open universes from de Sitter space. Nature, 295, 304-307. doi:10.1038/295304a0
[29] Farrar, G.R. and Zaharijas, G. (2006) Dark matter and the baryon asymmetry of the universe. Physical Review Letters, 96, 041302. doi:10.1103/PhysRevLett.96.041302
[30] Pont, F., Mayor, M., Turon, C. and Vandenberg, D.A. (1998) Hipparcos subdwarfs and globular cluster ages: The distance and age of M 92. Astronomy and Astrophysics, 329, 87-100.
[31] Ratra, B. and Vogeley, M.S. (2008) The beginning and evolution of the universe. Publications of the Astronomical Society of the Pacific, 120, 235-265. doi:10.1086/529495

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.