Share This Article:

Supplementing fibroblast growth factor 2 during bovine oocyte in vitro maturation promotes subsequent embryonic development

Full-Text HTML Download Download as PDF (Size:245KB) PP. 119-126
DOI: 10.4236/ojas.2012.22017    4,430 Downloads   8,241 Views   Citations

ABSTRACT

The Spontaneously Diabetic Torii (SDT) rat is a novel model for nonobese type 2 diabetes. In this study we investigated the glycolipid metabolic changes with phlorizin-treatment, which inhibits intestinal glucose uptake and renal glucose reabsorption, in male SDT rats. Phlorizin (100 mg/kg, b.i.d., s.c.) was administered for 4 weeks to SDT rats from 20 to 24 weeks of age. As a result, phlorizin reduced the development of hyperglycemia and decreased the hemoglo-bin A1c (HbA1c) levels. In the liver, phlorizin increased mRNA levels of glucokinase, the enzymes related with the glycogen cascade and the proteins associated with lipid metabolism. In conclusion, chronic administration of phlorizin in SDT rats produced a good glycemic control and an improvement in liver function.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zhang, K. and Ealy, A. (2012) Supplementing fibroblast growth factor 2 during bovine oocyte in vitro maturation promotes subsequent embryonic development. Open Journal of Animal Sciences, 2, 119-126. doi: 10.4236/ojas.2012.22017.

References

[1] Li, Q., McKenzie, L.J. and Matzuk, M.M. (2008) Revisiting oocyte-somatic cell interactions: In search of novel intrafol-licular predictors and regulators of oocyte developmental competence. Molecular Human Reproduction, 14, 673-678. doi:10.1093/molehr/gan064
[2] Binelli, M. and Murphy, B.D. (2010) Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, 22, 1-12. doi:10.1071/RD09218
[3] Gilchrist, R.B., Lane, M. and Thompson, J.G. (2008) Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Human Reproduction Update, 14, 159-177. doi:10.1093/humupd/dmm040
[4] Hussein, T.S., Thompson, J.G. and Gilchrist, R.B. (2006) Oocyte-secreted factors enhance oocyte developmental competence. Developmental Biology, 296, 514-521. doi:10.1016/j.ydbio.2006.06.026
[5] Yeo, C.X., Gilchrist, R.B., Thompson, J.G. and Lane, M. (2008) Exogenous growth differentiation factor 9 in oo- cyte maturation media enhances subsequent embryo de- velopment and fetal viability in mice. Human Reproduction, 23, 67-73. doi:10.1093/humrep/dem140
[6] Zhang, K., Hansen, P.J. and Ealy, A.D. (2010) Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction, 140, 815-826. doi:10.1530/REP-10-0190
[7] Buratini, J. Jr., Pinto, M.G., Castilho, A.C., Amorim, R.L., Giometti, I.C., Portela, V.M., Nicola, E.S. and Price, C.A. (2007) Expression and function of fibroblast growth fac- tor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biology of Reproduction, 77, 743- 750. doi:10.1095/biolreprod.107.062273
[8] Berisha, B., Sinowatz, F. and Schams, D. (2004) Expression and local-ization of fibroblast growth factor (FGF) family members dur-ing the final growth of bovine ovarian follicles. Molecular Reproduction and Development, 67, 162-171. doi:10.1002/mrd.10386
[9] Buratini, J. Jr., Teixeira, A.B., Costa, I.B., Glapinski, V.F., Pinto, M.G., Giometti, I.C., Barros, C.M., Cao, M., Ni- cola, E.S. and Price, C.A. (2005) Expres-sion of fibroblast growth factor-8 and regulation of cognate receptors, fi- broblast growth factor receptor-3c and -4, in bo-vine antral follicles. Reproduction, 130, 343-350. doi:10.1530/rep.1.00642
[10] Parrott, J.A. and Skinner, M.K. (1998) Developmental and hormonal regulation of keratinocyte growth factor expression and action in the ovarian follicle. Endocrinology, 139, 228-235. doi:10.1210/en.139.1.228
[11] Schams, D., Steinberg, V., Steffl, M., Meyer, H.H. and Berisha, B. (2009) Expression and possible role of fibroblast growth factor family members in porcine antral fol- licles during final maturation. Reproduction, 138, 141- 149. doi:10.1530/REP-09-0033
[12] Sugiura, K., Su, Y.Q., Diaz, F.J., Pangas, S.A., Sharma, S., Wigglesworth, K., O’Brien, M.J., Matzuk, M.M., Shima- saki, S. and Eppig, J.J. (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development, 134, 2593-2603. doi:10.1242/dev.006882
[13] Puscheck, E.E., Patel, Y. and Rappolee, D.A. (1997) Fi- broblast growth factor receptor (FGFR)-4, but not FGFR- 3 is expressed in the pregnant ovary. Molecular and Cel- lular Endocrinology, 132, 169-176. doi:10.1016/S0303-7207(97)00131-7
[14] Valve, E., Penttila, T.L., Paranko, J. and Harkonen, P. (1997) FGF-8 is expressed during specific phases of ro- dent oocyte and spermatogonium development. Bioche- mical and Biophysical Research Com-munications, 232, 173-177. doi:10.1006/bbrc.1997.6256
[15] Ben-Haroush, A., Abir, R., Ao, A., Jin, S., Kessler-Icek- son, G., Feldberg, D. and Fisch, B. (2005) Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses. Fertility and Sterility, 84, 1257-1268. doi:10.1016/j.fertnstert.2005.05.018
[16] Knee, R.S., Pitcher, S.E. and Murphy, P.R. (1994) Basic fibroblast growth factor sense (FGF) and antisense (gfg) RNA transcripts are expressed in unfertilized human oo- cytes and in differentiated adult tis-sues. Biochemical and Biophysical Research Communications, 205, 577-583. doi:10.1006/bbrc.1994.2704
[17] Gospodarowicz, D. and Bi-alecki, H. (1979) Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin. Endocrinology, 104, 757-764. doi:10.1210/endo-104-3-757
[18] Peluso, J.J. and Pappalardo, A. (1999) Progesterone maintains large rat granulosa cell vi-ability indirectly by stimu- lating small granulosa cells to synthesize basic fibroblast growth factor. Biology of Reproduction, 60, 290-296. doi:10.1095/biolreprod60.2.290
[19] Nilsson, E., Parrott, J.A. and Skinner, M.K. (2001) Basic fibroblast growth factor induces primordial follicle development and initiates follicu-logenesis. Molecular and Cellular Endocrinology, 175, 123-130. doi:10.1016/S0303-7207(01)00391-4
[20] Bieser, B., Stojkovic, M., Wolf, E., Meyer, H. and Einspanier, R. (1998) Growth factors and components for extracellular proteolysis are differentially expressed during in vitro maturation of bovine cumulus-oocyte complexes. Biology of Reproduction, 59, 801-806. doi:10.1095/biolreprod59.4.801
[21] Berisha, B., Sinowatz, F. and Schams, D. (2004) Expres- sion and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovar- ian follicles. Molecular Reproduction and Development, 67, 162-171. doi:10.1002/mrd.10386
[22] Berisha, B., Steffl, M., Amsel-gruber, W. and Schams, D. (2006) Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction, 131, 319-329. doi:10.1530/rep.1.00798
[23] Wang, X., Schutzkus, V., Huang. W., Rosa, G.J. and Kha- tib, H. (2009) Analysis of segregation distortion and association of the bovine FGF2 with fertiliza-tion rate and early embryonic survival. Animal Genetics, 40, 722-728. doi:10.1111/j.1365-2052.2009.01904.x
[24] Rivera, R.M. and Hansen, P.J. (2001) Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction, 121, 107- 115. doi:10.1530/rep.0.1210107
[25] Loureiro, B., Bonilla, L., Block, J., Fear, J.M., Bonilla, A.Q. and Hansen, P.J. (2009) Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology, 150, 5046-5054. doi:10.1210/en.2009-0481
[26] Fields, S.D., Hansen, P.J. and Ealy, A.D. (2011) Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology, 75, 1466-1475. doi:10.1016/j.theriogenology.2010.12.007
[27] Kobayashi, K., Yamashita, S. and Hoshi, H. (1994) In- fluence of epidermal growth factor and transforming growth factor-alpha on in vitro maturation of cumulus cell-enclosed bovine oocytes in a defined medium. Journal of Reproduction and Fertility, 100, 439-446. doi:10.1530/jrf.0.1000439
[28] Fear, J.M. and Hansen, P.J. (2011) Developmental changes in expression of genes involved in regulation of apoptosis in the bovine preimplantation embryo. Biology of Repro- duction, 84, 43-51. doi:10.1095/biolreprod.110.086249
[29] Paula-Lopes, F.F., Boelhauve, M., Habermann. F.A., Si- nowatz, F. and Wolf, E. (2007) Leptin promotes meiotic progression and developmental capacity of bovine oo-cytes via cumulus cell-independent and -dependent me- chanisms. Biology of Reproduction, 76, 532-541. doi:10.1095/biolreprod.106.054551
[30] Bettegowda, A., Patel, O.V., Lee, K.B., Park, K.E., Salem, M., Yao, J., Ireland, J.J. and Smith, G.W. (2008) Identifi- cation of novel bovine cumulus cell molecular markers predictive of oocyte competence: Functional and diag- nostic implications. Biology of Reproduction, 79, 301-309. doi:10.1095/biolreprod.107.067223
[31] Ireland, J.J., Zie-lak-Steciwko, A.E., Jimenez-Krassel, F., Folger, J., Bettegowda, A., Scheetz, D., Walsh, S., Mossa, F., Knight, P.G., Smith, G.W., et al. (2009) Variation in the ovarian reserve is linked to altera-tions in intrafollicular estradiol production and ovarian bio-markers of follicular differentiation and oocyte quality in cattle. Biology of Reproduction, 80, 954-964. doi:10.1095/biolreprod.108.073791
[32] Assidi, M., Dufort, I., Ali, A., Hamel, M., Algriany, O., Dielemann, S. and Sirard, M.A. (2008) Identification of potential markers of oocyte competence expressed in bo- vine cumulus cells matured with follicle-stimulating hor- mone and/or phorbol myristate acetate in vitro. Biology of Reproduction, 79, 209-222. doi:10.1095/biolreprod.108.067686
[33] SAS Institute Inc., Cary, USA.
[34] Caixeta, E.S., Ripamonte, P., Franco, M.M., Junior, J.B. and Dode, M.A. (2009) Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental com-petence. Reproduction, Fertility and Development, 21, 655-664. doi:10.1071/RD08201
[35] Dragovic, R.A., Ritter, L.J., Schulz, S.J., Amato, F., Arm- strong, D.T. and Gilchrist, R.B. (2005) Role of oocyte- secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology, 146, 2798- 2806. doi:10.1210/en.2005-0098
[36] Sugiura, K., Su, Y.Q., Li, Q., Wigglesworth, K., Matzuk, M.M. and Eppig, J.J. (2009) Fibroblast growth factors and epidermal growth factor cooperate with oocyte-derived members of the TGFbeta superfamily to regulate Spry2 mRNA levels in mouse cumulus cells. Biology of Reproduction, 81, 833-841. doi:10.1095/biolreprod.109.078485
[37] Block, J., Drost, M., Monson, R.L., Rutledge, J.J., Rivera, R.M., Paula-Lopes, F.F., Ocon, O.M., Krininger, C.E., 3rd, Liu, J. and Hansen, P.J. (2003) Use of insulin-like growth factor-I during embryo cul-ture and treatment of recipients with gonadotropin-releasing hormone to increase pregnancy rates following the transfer of in vitro-produced embryos to heat-stressed, lactating cows. Journal of Animal Science, 81, 1590-1602.
[38] Ornitz, D.M. (2000) FGFs, heparan sulfate and FGFRs: Complex interac-tions essential for development. BioEssays, 22, 108-112. doi:10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M
[39] Hasler, J.F., Henderson, W.B., Hurtega, P.J., Jin, Z.Q., McCauley, A.D. and Mower, S.A. (1995) Production, freezing and transfer of bovine IVF embryos and subse- quent calving results. Theriogenology, 43, 141-152. doi:10.1016/0093-691X(94)00020-U
[40] Kubisch, H.M., Sirisathien, S., Bosch, P., Hernandez-Fon-seca, H.J., Clements, G., Liukkonen, J.R. and Brackett, B.G. (2004) Effects of developmental stage, embryonic interferon-tau secretion and recipient synchrony on pregnancy rate after transfer of in vitro produced bovine blastocysts. Reproduction in Domestic Animals, 39, 120-124. doi:10.1111/j.1439-0531.2004.00491.x
[41] Anderson, R.A., Sciorio, R., Kinnell, H., Bayne, R.A., Thong, K.J., De Sousa, P.A. and Pickering, S. (2009) Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction, 138, 629-637. doi:10.1530/REP-09-0144
[42] Lonergan, P., Carolan, C., Van Langendonckt, A., Donnay, I., Khatir, H. and Mermillod, P. (1996) Role of epidermal growth factor in bovine oocyte matu-ration and preimplantation embryo development in vitro. Bi-ology of Reproduction, 54, 1420-1429. doi:10.1095/biolreprod54.6.1420
[43] Ikeda, S., Imai, H. and Yamada, M. (2003) Apoptosis in cumulus cells during in vitro maturation of bovine cumu- lus-enclosed oocytes. Reproduction, 125, 369-376. doi:10.1530/rep.0.1250369

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.