Heat Generation Effects on MHD Natural Convection Flow along a Vertical Wavy Surface with Variable Thermal Conductivity

DOI: 10.4236/ajcm.2012.21005   PDF   HTML     6,218 Downloads   11,653 Views   Citations

Abstract

The heat generation effects on magnetohydrodynamic(MHD) natural convection flow along a vertical wavy surface with variable thermal conductivity have been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the stream lines as well as the isotherms are shown graphically for a selection of parameters set consisting of thermal conductivity variation parameter, heat generation parameter Q, magnetic parameter M and Prandtl number Pr. Comparison of numerical results of present work with other published data has been shown in table.

Share and Cite:

M. Alim, M. Karim and M. Akand, "Heat Generation Effects on MHD Natural Convection Flow along a Vertical Wavy Surface with Variable Thermal Conductivity," American Journal of Computational Mathematics, Vol. 2 No. 1, 2012, pp. 42-50. doi: 10.4236/ajcm.2012.21005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. S. Yao, “Natural Convection along a Vertical Wavy Sur-face,” ASME Journal of Heat Transfer, Vol. 105, No. 3, 1983, pp. 465-468. doi:10.1115/1.3245608
[2] S. G. Moulic and L. S. Yao, “Mixed Convection along Wavy Surface,” ASME Journal of Heat Transfer, Vol. 111, No. 4, 1989, pp. 974-979. doi:10.1115/1.3250813
[3] K. C. A. Alam, M. A. Hossain and D. A. S. Rees, “Magnetohydrodynamic Free Convection along a Vertical Wavy Surface,” International Journal of Applied Mechanics and Engineering, Vol. 1, 1997, pp. 555-566.
[4] M. A. Hossain and D. A. S. Rees, “Combined Heat and Mass Transfer in Natural Convection Flow from a Vertical Wavy Surface,” Acta Mechanica, Vol. 136, No. 3-4, 1999, pp. 133-141. doi:10.1007/BF01179253
[5] C. C. Wang and C. K. Chen, “Transient Force and Free Convection along a Vertical Wavy Surface in Micropolar Fluid,” International Journal of Heat and Mass Transfer, Vol. 44, No. 17, 2001, pp. 3241-3251. doi:10.1016/S0017-9310(00)00329-X
[6] S. Kabir, M. A. Hossain and D. A. S. Rees, “Natural Convection of Fluid with Temperature Dependent Viscosity from Heated Vertical Wavy Surface,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 53, 2002, pp. 48-57. doi:10.1007/s00033-002-8141-z
[7] J. H. Jang, W. M. Yan and H. C. Liu, “Natural Convection Heat and Mass Transfer along a Vertical Wavy Surface,” International Journal of Heat and Mass Transfer, Vol. 46, No. 6, 2003, pp. 1075-1083. doi:10.1016/S0017-9310(02)00361-7
[8] J. H. Jang and W. M. Yan, “Mixed Convection Heat and Mass Transfer along a Vertical Wavy Surface,” International Journal of Heat and Mass Transfer, Vol. 47, No. 3, 2004, pp. 419-428. doi:10.1016/j.ijheatmasstransfer.2003.07.020
[9] M. M. Molla, M. A. Hossain and L. S. Yao, “Natural Convection Flow along a Vertical Wavy Surface with Uniform Surface Temperature in Presence of Heat Generation/Absorption,” International Journal of Thermal Sciences, Vol. 43, No. 2, 2004, pp. 157-163. doi:10.1016/j.ijthermalsci.2003.04.001
[10] B. Tashtoush and M. Al-Odat, “Magnetic Field Effect on Heat and Fluid flow over a Wavy Surface with a Variable Heat Flux,” Journal of Magnetism and Magnetic Materials, Vol. 268, No. 3, 2004, pp. 357-363. doi:10.1016/S0304-8853(03)00547-X
[11] L. S. Yao, “Natural Convection along a Vertical Complex Wavy Surface,” International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 281-286. doi:10.1016/j.ijheatmasstransfer.2005.06.026
[12] M. Ali, A. Alim and L. S. Andallah, “Conjugate Effects of Radiation and Joule Heating on Magnetohydrodynamic Free Convection Flow along a Sphere with Heat Generation,” American Journal of Computational Mathematics, Vol. 1, No. 1, 2011, pp. 18-25. doi:10.4236/ajcm.2011.11003
[13] M. Patel and M. G. Timol, “Magneto Hydrodynamic Orthogonal Stagnation Point Flow of a Power-Law Fluid Toward a Stretching Surface,” American Journal of Com- putational Mathematics, Vol. 1, No. 2, 2011, pp. 129- 133.
[14] N. Parveen and M. A. Alim, “Joule Heating Effect on Magnetohydrodynamic Natural Convection Flow along a Vertical Wavy Surface with Viscosity Dependent on Temperature,” International Journal of Energy & Technology, Vol. 3, 2011, pp. 1-10.
[15] W. M. Kays, “Convective Heat and Mass Transfer,” McGraw-Hill, New York, 1966, p. 362.
[16] M. A. Hossain, M. S. Munir and D. A. S. Rees, “Flow of Viscous Incompressible Fluid with Temperature Dependent Viscosity and Thermal Conductivity past a Permeable Wedge with Uniform Surface Heat Flux,” International Journal of Thermal Sciences, Vol. 39, No. 6, 2000, pp. 635-644. doi:10.1016/S1290-0729(00)00227-1
[17] H. B. Keller, “Numerical Methods in Boundary Layer Theory,” Annual Review of Fluid Mechanics, Vol. 10, 1978, pp. 417-433. doi:10.1146/annurev.fl.10.010178.002221
[18] T. Cebeci and P. Bradshaw, “Physical and Computational Aspects of Convec-tive Heat Transfer,” Springer, New York, 1984.
[19] M. A. Hossain, S. Kabir and D. A. S. Rees, “Natural Convection of Fluid with Temperature Dependent Viscosity from Heated Vertical Wavy Surface,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 53, 2002, pp. 48-52. doi:10.1007/s00033-002-8141-z

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.