Share This Article:

Clusters in Macroscopic Traffic Flow Models

Full-Text HTML XML Download Download as PDF (Size:959KB) PP. 51-60
DOI: 10.4236/wjm.2012.21007    6,881 Downloads   10,865 Views  


This paper concerns the traveling wave formation in macroscopic traffic flow models. The dynamics involved in this problem is described following a close analogy to compressible fluid dynamics. It is well known that vehicle clusters appear along a highway when the homogenous steady state taken as a reference is linearly unstable. The cluster properties are determined in an approximate way in terms of the parameters proper to each model and are compared between them.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Velasco and P. Saavedra, "Clusters in Macroscopic Traffic Flow Models," World Journal of Mechanics, Vol. 2 No. 1, 2012, pp. 51-60. doi: 10.4236/wjm.2012.21007.


[1] H. X. Ge, R. J. Cheng and S. Q. Dai, “KdV and Kink- Antikinksolitons in Car-Following Models,” Physica A: Statistical Mechanics and Its Applications, Vol. 357, No. 3-4, 2005, pp. 466-476. doi:10.1016/j.physa.2005.03.059
[2] H. B. Zhu and S. Q. Dai, “Numerical Simulation of Soliton and Kink Density Waves in Traffic Flow with Periodic Boundaries,” Physica A: Statistical Mechanics and Its Applications, Vol. 387, No. 16-17, 2008, pp. 4367- 4375. doi:10.1016/j.physa.2008.01.067
[3] Z. Z. Liu, X. J. Zhou, X. M. Liu and J. Luo, “Density Waves in Traffic Flow of Two Kinds of Vehicles,” Phy- sical Review E, Vol. 67, No. 1, 2003, pp. 017601-017604. doi:10.1103/PhysRevE.67.017601
[4] D. Helbing, “Traffic and Related Self-Driven Many-Particle Systems,” Reviews of Modern Physics, Vol. 73, No. 4, 2001, pp. 1067-1139. doi:10.1103/RevModPhys.73.1067
[5] M. J. Lighthill and G. B. Whitham, “On Kinematic Waves II. A Theory of Traffic Flow on Long Crowded Roads,” Proceedings of the Royal Society of London, Vol. 229, 1955, pp. 317-345.
[6] H. J. Payne, “Mathematical Models of Public Systems,” Simulation Councils, Inc., 1971.
[7] R. D. Kühne and R. Beckschulte, “Transportation and Traffic Theory,” Proceedings of 12th International Symposium on Transportation and Traffic Theory, Elsevier, Berkeley, 1993.
[8] B. S. Kerner and P. Konh?user, “Cluster Effect in Initially Homogenous Traffic Flow,” Physical Review E, Vol. 48, No. 4, 1993, R2335-R2338. doi:10.1103/PhysRevE.48.R2335
[9] B. S. Kerner and P. Konh?user, “Structure and Parameters of Clusters in Traffic Flow,” Physical Review E, Vol. 50, No. 51, 1994, pp. 54-83. doi:10.1103/PhysRevE.50.54
[10] A. Aw and M. Rascle, “Resurrection of “Second Order,” Models of Traffic Flow,” SIAM Journal of Applied Mathe- matics, Vol. 60, No. 3, 2000, pp. 916-938. doi:10.1137/S0036139997332099
[11] A. Aw, A. Klar, T. Materne and M. Rascle, “Derivation of Continuum Traffic Flow Models from Microscopic Follow the Leader Models,” SIAM Journal of Applied Mathematics, Vol. 63, No. 1, 2002, pp. 259-278. doi:10.1137/S0036139900380955
[12] W. Marques Jr. and R. M. Velasco, “An Improved Second-Order Continuum Traffic Model,” Journal of Statistical Mechanics: Theory and Experiment, Vol. 2010, 2010, P02012. doi:10.1088/1742-5468/2010/02/P02012
[13] D. Helbing, “Improved Fluid-Dynamic Model for Vehicular Traffic,” Physical Review E, Vol. 51, No. 4, 1995, pp. 3164-3169. doi:10.1103/PhysRevE.51.3164
[14] D. Helbing, “Theoretical Foundation of Macroscopic Traffic models,” Physica A: Statistical Mechanics and Its Applications, Vol. 219, No. 3-4, 1995, pp. 375-390. doi:10.1016/0378-4371(95)00174-6
[15] C. Wagner “Second-Order Continuum Traffic Flow Model,” Physical Review E, Vol. 54, No. 5, 1996, pp. 5073-5085. doi:10.1103/PhysRevE.54.5073
[16] R. M. Velasco and W. Marques Jr., “Navier-Stokes-Like Equations for Traffic Flow,” Physical Review E, Vol. 72, No. 4, 2005, pp. 046102-046110. doi:10.1103/PhysRevE.72.046102
[17] A. R. Méndez and R. M. Velasco, “An Alternative Model in Traffic Flow Equations,” Transportation Research Part B, Vol. 42, No. 9, 2008, pp. 782-797. doi:10.1016/j.trb.2008.01.003
[18] P. Berg and A. Woods, “On-Ramp Simulations and Solitary Waves of a Car-Following Model,” Physical Review E, Vol. 64, No. 3, 2001, 035602(R). doi:10.1103/PhysRevE.64.035602
[19] D. Helbing and M. Treiber, “Numerical Simulation of Macroscopic Traffic Equations,” Computing in Science & Engineering, Vol. 1, No. 5, 1999, pp. 89-99. doi:10.1109/5992.790593
[20] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, “Traffic Jams without Bottlenecks-Experimental Evidence for the Physical Mechanism of Formation of a Jam,” New Journal of Physics, Vol. 10, No. 3, 2008, 033001. doi:10.1088/1367-2630/10/3/033001
[21] B. S. Kerner, “The Physics of Traffic,” Springer, Berlin, 2005.
[22] B. S. Kerner, “Introduction of Modern Traffic Flow Theory and Control,” Springer, Berlin, 2009. doi:10.1007/978-3-642-02605-8
[23] B. R. Kerner, “Enciclopedia of Complexity and Systems Science,” Springer, Berlin, 2009, pp. 9302-9355.
[24] P. Berg, A. Mason and A. Woods, “Continuum Approach to Car-Following Models,” Physical Review E, Vol. 61, 2000, pp. 1056-1066. doi:10.1103/PhysRevE.64.035602
[25] D. A. Kürtze and D. C. Hong, “Traffic Jams, Granular Flow, and Soliton Selection,” Physical Review E, Vol. 52, No. 1, 1995, pp. 218-221. doi:10.1103/PhysRevE.52.218
[26] P. Saavedra and R. M. Velasco, “Solitons in a Macroscopic Traffic Model,” 12th IFAC Symposium on Transportation Systems, 2009, pp. 428-433.
[27] R. M. Velasco and P. Saavedra, “Clusters in the Helbing’s Improved Model,” Lecture Notes in Computational Science 6350, 2010, pp. 633-636.
[28] M. Treiber and D. Helbing, “Macroscopic Simulation of Widely Scattered Synchronized Traffic States,” Journal of Physics A: Mathematical and General, Vol. 32, No. 1, 1999, pp. L7-L23. doi:10.1088/0305-4470/32/1/003
[29] V. Shevtsov and D. Helbing, “Macroscopic Dynamics of Multilane Traffic,” Physical Review E, Vol. 59, No. 6, 1999, pp. 6328-6338. doi:10.1103/PhysRevE.59.6328
[30] P. G. Drazin and R. S. Johnson, “Solitons: An Introduction,” Cambridge University Press, Cambridge, 1990.
[31] R. S. Johnson, “Singular Perturbation Theory,” Springer, Berlin, 2004.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.