Simple Spectrophotometric Sequential Injection Analysis System for Determination of Serum Calcium


A sequential injection analysis (SIA) system for the determination of total calcium in blood has been implemented. The assay principle is based on the arsenazo III method, in which the indicator’s complex with calcium forms a blue-purple colour. The absorbance peak height at 650 nm was proportional to the calcium content in samples. A linear range was obtained from 2.5 - 15 mg?dL–1 (r2 = 0.999), with a detection limit of 0.430 mg?dL–1 (3σ). Magnesium, glucose, hae-moglobin, and bilirubin at 123, 1,000, 50, and 0.5 mg?dL–1, respectively, were not found to interfere with the proposed system significantly (recovery 99.1% - 104.4%). The sampling frequency was 30 h–1, in which the carry-over effect was negligible (0.69%). The proposed SIA system was successfully applied to the determination of calcium from serum samples (r2 = 0.970; n = 30).

Share and Cite:

Y. Boonyasit, C. Chinvongamorn, O. Chailapakul and W. Laiwattanapaisal, "Simple Spectrophotometric Sequential Injection Analysis System for Determination of Serum Calcium," American Journal of Analytical Chemistry, Vol. 3 No. 2, 2012, pp. 131-137. doi: 10.4236/ajac.2012.32019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. E. Polancic, “Elactrolytes,” In: M. L. Bishop, E. P. Fody and L. E. Schoeff, Eds., Clinical Chemistry: Principles, Procedures, Correlations, 5th Edition, Lippincott Williams & Wilkins, Philadelphia, 2005, pp. 314-342.
[2] D. B. Endres and R. K. Rude, “Disorders of Bone,” In: C. A. Burtis, E. R. Ashwood and D. E. Bruns, Eds., TIETZ Fundamentals of Clinical Chemi-stry, 6th Edition, St. Louis Saunders Elsevier, 2008, pp. 711-733.
[3] N. O. Leary, A. Pembroke and P. F. Duggan, “Single Stable Reagent (Arsenazo III) for Optically Robust Measurement of Calcium in Serum and Plasma,” Clinical che-mistry, Vol. 38, No. 6, 1992, p. 904.
[4] S. Shibata, K. Goto and Y. Ishiguro, “Dual-Wavelength Spectrophotometry: Part III. Determination of Arsenazo I in Arsenazo III,” Analytica Chimica Acta, Vol. 62, No. 2, 1972, pp. 305-310. doi:10.1016/0003-2670(72)80037-0
[5] Y. Boonyasit, T. Maturos, A. Sappat, A. Jomphoak, A. Tuantranont and W. Laiwattanapaisal, “Passive Micromixer Integration with a Mi-crofluidic Chip for Calcium Assay Based on the Arsenazo III Method,” BioChip Journal, Vol. 5, 2011, pp. 1-7. doi:10.1007/s13206-011-5101-8
[6] N. Malcik, J. P. Ferrance, J. P. Landers and P. Caglar, “The Performance of a Micro-chip-Based Fiber Optic Detection Technique for the Determi-nation of Ca2+ Ions in Urine,” Sensors and Actuators B: Chem-ical, Vol. 107, No. 1, 2005, pp. 24-31. doi:10.1016/j.snb.2004.09.049
[7] P. Caglar, S. A. Tuncel, N. Malcik, J. P. Landers and J. P. Ferrance, “A Microchip Sensor for Calcium Determination,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 5, 2006, pp. 1303-1312. doi:10.1007/s00216-006-0776-8
[8] M. Zenki, K. Minami-sawa and T. Yokoyama, “Clean Analytical Methodology for the Determination of Lead with Arsenazo III by Cyclic Flow-Injection Analysis,” Talanta, Vol. 68, 2005, pp. 281-286. doi:10.1016/j.talanta.2005.07.059
[9] D. B. Gladilovich, V. Kub and L. Sommer, “Determination of the Sum of Rare-Earth Elements by Flow-Injection Analysis with Arsenazo III, 4-(2-pyridylazo) Resorcinol, Chrome Azurol S and 5-Bromo-2-(2-pyridylazo)- 5-diethylaminophenol Spectropho-tometric Reagents,” Talanta, Vol. 35, No. 4, 1988, pp. 259-265. doi:10.1016/0039-9140(88)80082-1
[10] K. Grudpan, W. Pra-ditweangkum, P. Sooksamiti and R. Edwards, “Flow-Injection Spectrophotometric Determination of Yttrium with Arsenazo III,” Laboratory Robotics and Automation, Vol. 11, 1999, pp. 279-283. doi:10.1002/(SICI)1098-2728(1999)11:5<279::AID-LRA6>3.0.CO;2-Y
[11] A. Rius, M. P. Callao and F. X. Rius, “Self-Configuration of Sequential Injection Analytical Systems,” Analytica Chimica Acta, Vol. 316, No. 1, 1995, pp. 27-37. doi:10.1016/0003-2670(95)00346-2
[12] I. Ruisánchez, J. Lozano, M. S. Larrechi, F. X. Rius and J. Zupan, “On-Line Automated Analytical Signal Diagnosis in Sequential Injection Analysis Systems Using Artificial Neural Networks,” Analytica Chimica Acta, Vol. 348, No. 1, 1997, pp. 113-127. doi:10.1016/S0003-2670(97)00147-5
[13] D. ?atínsky, I. Neto, P. Solich, H. Sklená?ová, M. Concei??o, B. S. M. Montenegro and A. N. Araújo, “Sequential Injection Chromatographic De-termination of Parace- tamol, Caffeine, and Acetylsalicylic Acid in Pharmaceutical Tablets,” Journal of Separation Science, Vol. 27, 2004, pp. 529-536. doi:10.1002/jssc.200301644
[14] J. F. Van Staden and R. E. Taljaard, “Determination of Calcium in Water, Urine and Pharmaceutical Samples by Sequential Injection Analysis,” Analytica Chimica Acta, Vol. 323, No. 1, 1996, pp. 75-85. doi:10.1016/0003-2670(95)00615-X
[15] J. Nyman and A. Ivaska, “Spectrophotometric Determination of Calcium in Paper Machine White Water by Sequential Injection Analysis,” Analytica Chimica Acta, Vol. 308, No. 1-3, 1995, pp. 286-292. doi:10.1016/0003-2670(94)00476-3
[16] J. Nyman and A. Ivasca, “Potentiometric and Spectrophotometric Determination of Calcium in the Wet End of Paper Machines by Flow Injection Analysis,” Talanta, Vol. 40, No. 1, 1993, pp. 95-99. doi:10.1016/0039-9140(93)80146-I
[17] B. R. Morgan, J. D. Artiss and B. Zak, “Calcium Determination in Serum with Stable Alkaline Arsenazo III and Triglyceride Clearing,” Clinical Chemistry, Vol. 39, No. 8, 1993, pp. 1608-1612.
[18] A. N. Ara jo, R. C. C. Costa, J. L. F. C. Lima and B. F. Reis, “Se-quential Injection System in Flame Atomic Absorption Spec-trometry for the Determination of Calcium and Magnesium in Mineral Waters,” Analytica Chimica Acta, Vol. 358, No. 2, 1998, pp. 111-119. doi:10.1016/S0003-2670(97)00583-7
[19] V. Cerda, A. Cerda, A. Cladera, M. T. Oms, F. Mas, E. Gomez, F. Bauza, M. Miro, R. Forteza and J. M. Estela, “Monitoring of Environmental Parameters by Sequential Injection Analysis,” TrAC Trends in Analytical Chemistry, Vol. 20, No. 8, 2001, pp. 407-418. doi:10.1016/S0165-9936(01)00064-4
[20] R. Haeckel, “Pro-posals for the Description and Measurement of Carry-Over Effects in Clinical Chemistry,” Pure and Applied Chemistry, Vol. 63, No. 2, 1991, pp. 301-306. doi:10.1351/pac199163020301

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.