Electroporation and electropermeabilization of lipid bilayer membranes in the course of snakes’ venom intoxication

Abstract

The present study was undertaken to elucidate how the plastic properties of model membranes from native lipids of different tissues of rats change in the course of Macrovipera lebetina obtuse (MLO), Montivipera raddei (MR) and Naja kaouthia (NK) venoms processing. The presence of viper venom in organism lead to increasing of the electrical resistance of BLMs from liver and muscle lipids approximately on a sequence, while the BLMs from brain lipids has not shown a noticeable differences of plastic properties compare the control. The same concentration of cobra venom leads to decreasing of electrical resistance of BLMs from 1011 Ohm till 108 Ohm. The low concentration of venom leads to appearance of channel activity. Especially it is noticeable in liver lipids in media of bivalen ions.

Share and Cite:

Ayvazyan, N. , Ghazaryan, N. and Zaqaryan, N. (2012) Electroporation and electropermeabilization of lipid bilayer membranes in the course of snakes’ venom intoxication. Journal of Biophysical Chemistry, 3, 44-48. doi: 10.4236/jbpc.2012.31006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sanz, L., Ayvazyan, N. and Calvete, J. (2008) Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. Journal of Proteomics, 71, 198-209. doi:10.1016/j.jprot.2008.05.003
[2] Mackessy, S.P. (2010) Handbook of venoms and toxins of reptiles. CRC Press, Boca Raton.
[3] Gawade, S.P. (2007) Therapeutic alternatives from venoms and toxins. Indian Journal of Pharmacology, 39, 260-264. doi:10.4103/0253-7613.39143
[4] Koh, D.C.I., Armugam, A. and Jeyaseelan, K. (2006) Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences, 63, 3030-3041. doi:10.1007/s00018-006-6315-0
[5] Calvete, J., Sanz, L., Angulo, Y., Lomonte, B. and Gutierrez, J.M. (2009) Venoms, venomics, antivenomics. FE BS Letters, 583, 1736-1743. doi:10.1016/j.febslet.2009.03.029
[6] Kini, R.M. and Evans, H.J. (1992) Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon, 30, 265-293. doi:10.1016/0041-0101(92)90869-7
[7] Marcinkiewicz, C., Weinreb, P.H., Calvete, J.J., Kisiel, D.G., Mousa, S.A., Tuszynski, G.P. and Lobb, R.R. (2003) Obtustatin: A potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Research, 63, 2020-2023.
[8] Ferreira, T.L. and Ward, R.J. (2009) The interaction of bothropstoxin-I (Lys49-PLA(2)) with liposome membranes. Toxicon, 54, 525-530. doi:10.1016/j.toxicon.2009.05.025
[9] Su, Z.Y. and Wang, Y.T. (2011) Coarse-grained molecular dynamics simulations of cobra cytotoxin A3 interactions with a lipid bilayer: Penetration of loops into membranes. Journal of Physical Chemistry B, 115, 796-802. doi:10.1021/jp107599v
[10] Bagatolli, L.A. and Gratton, E. (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophysical Journal, 79, 434-447. doi:10.1016/S0006-3495(00)76305-3
[11] Sanchez, S.A., Bagatolli, L.A., Gratton, E. and Hazlett, T.L. (2002) Two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophysical Journal, 82, 2232-2243. doi:10.1016/S0006-3495(02)75569-0
[12] Mueller, P., Rudin, D.O., Tien, H. and Wescott, W.C. (1962) Reconstruction of cell membranes structure in vitro and its transformation into an excitable system. Nature, 194, 979-980. doi:10.1038/194979a0
[13] Hirota, S. and Duzgunes, N. (2011) Physico-chemical approach to targeting phenomena. Current Drug Discovery Technologies, 8, 286. doi:10.2174/157016311798109399
[14] Buchsteiner, A., Hauss, T., Dante, S. and Dencher, N.A. (2010) Alzheimer’s disease amyloid-beta peptide analogue alters the ps-dynamics of phospholipid membranes. Biochimica et Biophysica Acta, 1798, 1969-1976. doi:10.1016/j.bbamem.2010.06.024
[15] Qiu, L., Lewis, A., Como, J., Vaughn, M.W., Huang, J., Somerharju, P., Virtanen, J. and Cheng, K.H. (2009) Cholesterol modulates the interaction of beta-amyloid peptide with lipid bilayers. Biophysical Journal, 96, 4299-4307. doi:10.1016/j.bpj.2009.02.036
[16] Zakharyan, A.E. and Ayvazian, N.M. (2005) Modeling of BLMs in aspect of phylogenetic development of vertebrates. In: Ottova-Leitmannova, A., Ed., Advances in Planar Lipid Bilayers and Liposomes, Elsevier, 238-259.
[17] Ayvazyan, N.M. (2008) Application of the biophysical methodology in contemporary herpetology. Current Studies in Herpetology, 8, 3-9.
[18] Ayvazyan, N.M., Zaqarian, A.E. and Ghazaryan, N.A. (2011) Free radical oxidation and condition of membranes from brain lipids of vertebrates in the course of Vipera lebetina obtusa venom interaction. New Armenian Medical Journal, 3.
[19] Kates, M. (1972) Techniques of lipidology: Isolation, analysis and identification of lipids. North-Holland Pub. Co., Amsterdam.
[20] Mueller, P., Rudin, D., Tien, H. and Wescot, T.J. (1962) Reconstruction of cell membranes structure in vitro and its transformation into an excitable system. Nature, 194, 979-980. doi:10.1038/194979a0
[21] Leidy, C., Ocampo, J., Duelund, L., Mouritsen, O.G., J?rgensen, K. and Peters, G.H. (2011) Membrane restructuring by phospholipase A2 is regulated by the presence of lipid domains. Biophysical Journal, 101, 90-99. doi:10.1016/j.bpj.2011.02.062
[22] Jan, V., Maroun, R.C., Robbe-Vincent, A., De Haro, L. and Choumet, V. (2002) Toxicity evolution of Vipera aspis aspis venom: Identification and molecular modeling of a novel phospholipase A(2) heterodimer neurotoxin. FEBS Letters, 527, 263-268. doi:10.1016/S0014-5793(02)03205-2
[23] Fox, J.W. and Serrano, S.M.T. (2005) Snake toxins and hemostasis. Toxicon, 45, 951-1181. doi:10.1016/j.toxicon.2005.04.007
[24] Gasmi, A., Bourcier, C., Aloui, Z., Srairi, N., Marchetti, S. and Gimond, C. (2002) Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signaling. Journal of Biological Chemistry, 277, 29992-29998. doi:10.1074/jbc.M202202200
[25] Chavushyan, V.A., Gevorkyan, A.Z., Avakyan, Z.é., Avetisyan, Z.A., Pogosyan, M.V. and Sarkisyan, D.S. (2006) The protective effect of Vipera raddei venom on peripheral nerve damage. Neuroscience and Behavioral Physiology, 36, 39-51. doi:10.1007/s11055-005-0161-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.