Share This Article:

Carbon Stock Changes in Soil and Aboveground Biomass from House Lot Development in King County, Washington, USA

Full-Text HTML Download Download as PDF (Size:222KB) PP. 1-8
DOI: 10.4236/ojf.2012.21001    4,415 Downloads   7,632 Views   Citations

ABSTRACT

Fossil fuel burning and deforestation have driven dramatic increases in atmospheric CO2 since the industrial revolution. However, forests in the northern temperate region sequester a substantial (~0.6 Pg?yr–1) amount of carbon (C), largely through the regrowth of secondary forests that were originally cleared for timber over one hundred years ago. In the United States, however, some regions are approaching a maximum regrowth as forests are cleared again, this time for suburban and exurban development. Here we explore the effects of such development on C stocks in King County, WA, an area with high forest cover but rapid suburban expansion. We measured soil and biomass C on 18 paired-house/forest lots, and found house lots stored ~80 Mg?C?ha–1 less soil C, and between 130 and 280 Mg?C?ha–1 less above-ground biomass C than adjacent forest lots. Combining soil C losses with estimates of C emissions from forest products yields average C emissions of 130 - 280 Mg?C?ha–1, with the majority of losses occurring at the time of lot conversion. As a comparison, suburban dwellers drive ~30% more than city residents, but this increase in annual emissions from increased driving is 1% - 2.5% of the losses of C associated with converting forests to house lots. If forestland conversion in the Seattle area continues apace, in the coming decades C emissions each year from that land-use conversion will equal ~4% of King County’s 2008 C emissions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Porder, S. , Lipson, D. & Harrison, R. (2012). Carbon Stock Changes in Soil and Aboveground Biomass from House Lot Development in King County, Washington, USA. Open Journal of Forestry, 2, 1-8. doi: 10.4236/ojf.2012.21001.

References

[1] Adams, A., Harrison, R., Sletten, R., Strahm, B., Tumblom, E., & Jensen, C. (2005). Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. Forest Ecology and Management, 220, 313-325. doi:10.1016/j.foreco.2005.08.018
[2] Berhe, A., Harte, J., Harden, J., & Torn, M. (2007). The significance of the erosion-induced terrestrial carbon sink. Bioscience, 57, 337-346. doi:10.1641/B570408
[3] Binkley, D., Sollins, P., Bell, R., Sachs, D., & Myrold, D. (1992). Biogeochemistry of adjacent Conifer and Alder-Conifer stands. Ecology, 73, 2022-2033. doi:10.2307/1941452
[4] Brown, D. G., Johnson, K. M., Loveland, T. R., & Theobald, D. M. (2005). Rural land-use trends in the conterminous United States, 1950-2000. Ecological Applications, 15, 1851-1863. doi:10.1890/03-5220
[5] Brown, T. (2008). Period of record monthly climate summary. In: NOAA Washington Climate Summary. URL (last checked 20 December 2008). http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa7468.
[6] Dwyer, J. F., Nowak, D. J., Noble, M. H., & Sisinna, S. (2000). Connecting people with ecosystems in the 21st Century: An assessment of our nation’s urban forests. United States Department of Agriculture Forest Service, PNW-GTR-4990.
[7] Erickson, A., Rogers, L. (2008) Western Washington land use change. Rural Technology Initiative. http://www.ruraltech.org/projects/wwaluc/
[8] EPA (2003). US inventory of greenhouse gas emissions and sinks 1990-2001. Washington DC: Office of Atmospheric Programs, US Environmental Protection Agency, EPA 430-R-03-004.
[9] Franklin, J. F., & Dyrness, C. T. (1973). Natural vegetation of Oregon and Washington. United States Department of Agriculture General Technical Report PNW-8. Portland, OR.
[10] Franklin, J., Hall, F., Laudenslayer, W., Maser, C., Nunan, J., Poppino, J., Ralph, C. J., & Spies, T. (1986). Old growth Definition task group report: Interim definitions for old-growth Douglas-Fir and Mixed-Conifer forests in the Pacific Northwest and California. USDA Forest Service, Pacific Northwest Research Station Research Note PNW-447.
[11] Golubiewski, N. (2006). Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s Front Range. Ecological Applications, 16, 555-571. doi:10.1890/1051-0761(2006)016[0555:UIGCPE]2.0.CO;2
[12] Grossman, R., & Reinsch, T. (2002) Bulk density and linear extension In J. H. Dane, & G. C. Topp (Eds.), Methods of soil analysis part IV: Physical methods (p. 1692). Madison, WI: Soil Science Society of America.
[13] Harmon, M., Harmon, J., Ferrell, W., & Brooks, D. (1996). Modeling carbon stores in Oregon and Washington forest products: 1900-1992. Climatic Change, 33.
[14] Harrison, R., et al. (2009). Biomass and stand characteristics of highly productive mixed Douglas Fir and Western Hemlock Plantation in Coastal Washington. Western Journal of Applied Forestry, 24, 180-286. doi:10.1146/annurev.earth.35.031306.140057
[15] Heath, L., Birdsey, R., Clark, R., & Plantinga, J. (1996) Carbon pools and flux in US forest products. Forest ecosystems, forest management and global carbon cycle (pp. 271-278). New York: Springer-Verlag.
[16] Houghton, R. (2007). Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313-347.
[17] Hutyra, L. R., Yoon, B., & Albert, M. (2011). Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Global Change Biology, 17, 783-797. doi:10.1111/j.1365-2486.2010.02238.x
[18] IPCC (2007). Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
[19] Jenkins, J., Chojnacky, D., Heath, L., & Birdsey, R. (2004). Comprehensive database of diameter-based biomass regressions for North American tree species. United States Department of Agriculture General Technical Report NE-319.
[20] Jo, H., & McPherson, E. (1995). Carbon storage and flux in urban residential green space. Journal of Environmental Management, 45, 109-133. doi:10.1006/jema.1995.0062
[21] Kahn, M. (2000). The environmental impact of suburbanization. Journal of Policy Analysis and Management, 17, 569-586. doi:10.1002/1520-6688(200023)19:4<569::AID-PAM3>3.0.CO;2-P
[22] Kaye, J. P., McCulley, R. L., & Burke, I. C. (2005). Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biology, 11, 575-587. doi:10.1111/j.1365-2486.2005.00921.x
[23] Kaye, J. P., Groffman, P., Grimm, N. B., Baker, L., & Pouyat, R. (2006). A distinct urban biogeochemistry? Trends in Ecology and Evolution, 21, 192-199. doi:10.1016/j.tree.2005.12.006
[24] MacLean, C., & Bolsinger, C. L. (1997). Urban expansion in the forests of the Puget Sound Region. Resource Bulletin PNW-RB-225. Portland: USDA Forest Service.
[25] McHale, M., Burke, I., Lefsky, M., Peper, P., & McPherson, E. (2009). Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems, 12, 95-113. doi:10.1007/s11252-009-0081-3
[26] Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: E. G. McPherson, D. J. Nowak, & R. A. Rowntree (Eds.), Chicago’s urban forest ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. US Department of Agriculture, Forest Service: 83-94.
[27] Oleson, J., Hope, D., Gries, C., & Kaye, J. P. (2006). A Baysian approach to estimating regression coefficients for soil properties in land-use patches with varying degrees of spatial variation. Environmetrics, 17, 517-525. doi:10.1002/env.789
[28] Overby, K. (2008). Puget sound trends: Trends in vehicle miles traveled. URL (last checked 31 January 2009). www.psrc.org/publications/pubs/trends/t2sep08.pdf.
[29] Perez-Garcia, J., Lippke, B., Comnick, J., & Manriquez, C. (2006). An assesment of carbon pools, storage and wood products market substitution using life-cycle analysis results. Wood Fiber Science, 37, 140-148.
[30] Pacala, S., et al. (2001). Consistent land- and atmosphere-based US carbon sink estimates. Science, 292, 2316-2320. doi:10.1126/science.1057320
[31] Pataki, D., Alig, R., Fung, A., Goliubski, E., Kennedy, C., McPherson, E., Nowak, K., Pouyat, R., & Pomero Lankao, P. (2006). Urban ecosystems and the North American carbon cycle. Global Change Biology, 12, 2092-2102. doi:10.1111/j.1365-2486.2006.01242.x
[32] Pouyat, R., Groffman, P., Yesilonis, I., Hernandez, L. (2002) Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, 116, 107-118. doi:10.1016/S0269-7491(01)00263-9
[33] Pouyat, R., Yesilonis, I., & Nowak, D. (2006). Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35, 1566-1575. doi:10.2134/jeq2005.0215
[34] Pouyat, R., Yesilonis, I., & Golubiewski, N. (2009). A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems, 12, 45-62. doi:10.1007/s11252-008-0059-6
[35] Puget Sound Regional Council (2008). Vision 2040. In: Puget Sound Regional Council Documents. URL (last checked 18 September 2008). http://psrc.org/projects/vision/pubs/vision2040/index.htm.
[36] Qian, Y., & Follet, R. F. (2002). Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. Agronomy, 94, 930-935. doi:10.2134/agronj2002.0930
[37] Robbins, W. (1985). The social context of forestry: The Pacific Northwest in the 20th Century. The Western History Quarterly, 16, 413-427. doi:10.2307/968606
[38] Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore III, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. K., & Wirth, C. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecos
[39] Schlesinger, W. (1997). Biogeochemistry: An analysis of global change (2nd ed.). San Diego, CA: Academic Press.
[40] Smithwick, E., Harmon, M., Remillard, S., Acker, S., & Franklin, J. (2002) Potential upper bounds of carbon stores in forests of the Pacific Northwest. Journal of Applied Ecology, 12, 1303-1317. doi:10.1890/1051-0761(2002)012[1303:PUBOCS]2.0.CO;2
[41] Soil Survey Staff (2008). Soil survey of King County, Washington. In: Natural Resources Conservation Service, United States Department of Agriculture Soil Survey. URL (last checked 10 December 2008). http://soildatamart.nrcs.usda.gov/Survey.aspx?State=WA.
[42] Spies, T. A., & Franklin, J. F. (1996). The diversity and maintenance of old-growth forests. In R. C. Szaro, & D. W. Johnson (Eds.), Biodiversity in managed landscapes: Theory and practice (pp. 296-314). Oxford, New York.
[43] Vincent, K., & Chadwick, O. (1994). Synthesizing bulk density for soils with abundant rock fragments. Soil Science Society of America Journal, 58, 455-464. doi:10.2136/sssaj1994.03615995005800020030x
[44] Wienert, A. (2006). From forestland to house lot: Carbon stock changes and greenhouse gas emissions from exurban land development in central New Hampshire. Masters Thesis, Brown University.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.