Share This Article:

Crystal Structure and Electrical Properties of La0.45Ce0.1Li0.27TiO3 Synthesized by Sol-Gel Technique

Abstract Full-Text HTML XML Download Download as PDF (Size:381KB) PP. 59-64
DOI: 10.4236/njgc.2012.21009    4,067 Downloads   7,780 Views   Citations

ABSTRACT

The lithium ionic conductingLa0.45Ce0.1Li0.27TiO3 has been synthesized by sol-gel method. This solid is the result of substitutional doping with Ce(IV) in La0.45Ce0.1Li0.27TiO3 compound. The aim of the replacement of La(III) by Ce(IV) is increase the number of vacancies in the structure and favors the ionic mobility. Structural characterization shows that the obtained material have the expected tetragonal P4/mmm perovskite structure. Chemical analysis shows that composition was homogeneus in all the sample. The bulk conductivity measured at room temperature is about the same as previously reported for its related lanthanum lithium titanate. However, the lower activation energy for ionic conduction encourages further searching for better conductors in this system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Fernández, P. Escribano, E. Cordoncillo, H. Beltrán, M. García-Sánchez, I. Romero-Ibarra and N. Masó, "Crystal Structure and Electrical Properties of La0.45Ce0.1Li0.27TiO3 Synthesized by Sol-Gel Technique," New Journal of Glass and Ceramics, Vol. 2 No. 1, 2012, pp. 59-64. doi: 10.4236/njgc.2012.21009.

References

[1] A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya and Y. I. Gornikov, “Crystal-Chemical and Electrical-Physical Characteristics of Ln(2/3-x)M3xTiO3 Complex Oxides,” Zhur- nal Neorganicheskoi Khimii, Vol. 32, No. 2, 1987, pp. 283-286.
[2] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Communications, Vol. 86, No. 10, 1993, pp. 689-693. doi:10.1016/0038-1098(93)90841-A
[3] H. Kawai and J. Kuwano, “Lithium Ion Conductivity of A-Site Deficient Pe-rovskite Solid Solution La0,67-xLi3x- TiO3,” Journal of The Electrochemical Society, Vol. 141, No. 7, 1994, pp. L78-L79. doi:10.1149/1.2055043
[4] M. Morales and A. R. West, “Phase Diagram, Crystal Chemistry and Lithium Ion Conduc-tivity in the Perovs- kite-Type System Pr0,5+xLi0,5-3xTiO3,” Solid State Ionics, Vol. 91, No. 1-2, 1996, pp. 33-43. doi:10.1016/S0167-2738(96)00420-1
[5] A. D. Robertson, S. García-Martín, A. Coats and A. R. West, “Phase Diagrams and Crystal Chemistry in the Li+ Ion Conducting Perovskites, Li0,5-3xRE0,5+3xTiO3: RE = Pr, Nd,” Journal of Materials Che-mistry, Vol. 5, No. 9, 1995, pp. 1405-1412. doi:10.1039/jm9950501405
[6] A. I. Ruiz, M. L. López, M. L. Veiga and C. Pico, “Electrical Properties of La1,33-xLi3xTi2O6 (0,1 < x < 0,3),” Solid State Ionics, Vol. 112, No. 3-4, 1998, pp. 291-297. doi:10.1016/S0167-2738(98)00220-3
[7] E. A. Fortal’nova, O. N. Gavrilenkov, A. G. Belous and E. D. Politova, “Lithium-Ion Conducting Oxides: Synthesis, Structure, and Electroconducting Properties,” Russian Journal of General Chemistry, Vol. 79, No. 9, 2009, pp. 1987-1997. doi:10.1134/S1070363209090308
[8] P. Knauth, “Inorganic Solid Li Ion Conductors: An Overview,” Solid State Ionics, Vol. 180, No. 14-16, 2009, pp. 911-916. doi:10.1016/j.ssi.2009.03.022
[9] O. Bohnke, “The Fast Li-thium-Ion Conducting Oxides Li3xLa2/3-xTiO3 from Fundamen-tals to Application,” Solid State Ionics, Vol. 179, No. 1-6, 2008, pp. 9-15.
[10] S. Stramare, V. Thangadurai and W. Weppner, “Lithium Lanthanum Titanates: A Review,” Chemistry of Ma-terials, Vol. 15, No. 21, 2003, pp. 3974-3990. doi:10.1021/cm0300516
[11] M.-L. Martínez-Sarrión, L. Me-stres, M. Herráiz, O. Ma- queda, A. Bakkali and N. Fernández, “Phase Diagram and Impedance Spectroscopy Study of the La0,5+x-yBiyLi0,5-3x- TiO3 System,” European Journal of Inor-ganic Chemistry, Vol. 2002, No. 7, 2002, pp. 1794-1800. doi:10.1002/1099-0682(200207)2002:7<1794::AID-EJIC1794>3.0.CO;2-#
[12] M.-L. Martínez-Sarrión, L. Mestres, M. Herráiz, O. Ma- queda, N. Fernández and M. F. García, “Syn-thesis and Electrical Properties of the Pr0,5+x-yBiyLi0,5-3xTiO3 System,” European Journal of Inorganic Chemistry, Vol. 2003, No. 13, 2003, pp. 2458-2462. doi:10.1002/ejic.200200657
[13] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica, Vol. A32, No 5, 1976, pp. 751-767.
[14] A. R. West, “Solid State Chemistry and its Applications,” John Wiley & Sons, Hoboken, 1998.
[15] M. F. García-Sánchez, N. Fernández, M.-L. Martínez-Sa- rrión, L. Mestres, M. Herraiz, P. Escribano, E. Cordoncillo and H. Beltrán, “Comparison of the Electrical Properties of the New Conductor Pr0.5Bi0.05Li0.35TiO3 Prepared by Sol-Gel and Ceramic Methods,” Physica Status Solidi (b), Vol. 242, No. 9, 2005, pp. 1924-1927. doi:10.1002/pssb.200461798
[16] T. W?hrle, P. Gómez-Romero, T. Fries, K. West, M. R. Palacín and N. Ca-sa?-Pastor, “Sol-Gel Synthesis of the Lithium-Ion Conducting Perovskite La0,57Li0,3TiO3. Effect of the Synthesis and Thermal Treatments on the Structure and Conducting Properties,” Ionics, Vol. 2, No. 5-6, 1996, pp. 442-445. doi:10.1007/BF02375824
[17] M. F. García, N. Fernández, K. Borrego, M.-L. Martínez- Sarrión, L. Mestres, M. Herraiz, “Study of the Lithium Insertion and Deinsertion in Perovskite Praseodymium Bismuth Lithium Titanate,” Journal of the Eu-ropean Ceramic Society, Vol. 25, No. 5, 2005, pp. 729-734.
[18] S. García-Martín, M. A. Alario-Franco, H. Ehrenberg, J. Rodríguez-Carvajal and U. Amador, “Crystal Structure and Microstructure of Some La2/3-xLi3xTiO3 Oxides: An Example of the Complementary Use of Electron Diffraction and Microscopy and Synchrotron X-ray Diffraction to Study Complex Materials,” Journal of the American Chemical Society, Vol. 126, No. 11, 2004, pp. 3587-3596. doi:10.1021/ja038410l
[19] O. I. V’yunov, O. N. Gavrilenko, L. L. Kovalenko, S. A. Chernukhin and L. O. Vasilechko, “In-tercalation Processes Influence the Structure and Electrophysical Properties of Lithium-Conducting Compounds Having Defect Perovskite Structure,” Russian Journal of Inorganic Che- mistry, Vol. 56, No. 1, 2011, pp. 93-98. doi:10.1134/S0036023611010232
[20] N. S. P. Bhuvanesh, O. Bohnké, H. Duroy, M. P. Crosnier-Lopez, J. Emery and J. L. Fourquet, “Topotactic H+/Li+ Ion Exchange on La2/3-xLi3xTiO3: New Metastable Perovskite Phases La2/3-xTiO3-3x(OH)3x and La2/3-xTiO3-3x/2 Obtained by Further Dehydration,” Materials Research Bulletin, Vol. 33, No. 11, 1998, pp. 1681-1691. doi:10.1016/S0025-5408(98)00170-6
[21] O. Bohnke, C. Bohnke and J. L. Fourquet, “Mechanism of Ionic Conduction and Electrochemical Intercalation of Lithium into the Perovskite Lanthanum Lithium Titanate,” Solid State Ionics, Vol. 91, No. 1-2, 1996, pp. 21-31. doi:10.1016/S0167-2738(96)00434-1
[22] M. F. García-Sánchez, J.-C. M′Peko, A. R. Ruiz-Salvador, G. Rodríguez-Gattorno, Y. Echevarría, F. Fernández-Gu- tierrez and A. Delgado, “An Elementary Picture of Dielectric Spec-troscopy in Solids: Physical Basis,” Journal of Chemical Edu-cation, Vol. 80, No. 9, 2003, pp. 1062- 1073. doi:10.1021/ed080p1062
[23] A. K. Jonscher, “Dielectric Re-laxation in Solids,” Chelsea Dielectric Press, London, 1983.
[24] M. F. García-Sánchez, A. Ortiz, G. Santana,. M. Bizarro, J. Pe?a, F. Cruz-Gandarilla, M. A. Aguilar-Frutis and J. C. Alonso, “Synthesis and Characterization of Nanostructured Cerium Dioxide Thin Films Deposited by Ultrasonic Spray Pyrolysis,” Journal of the American Ceramic Society, Vol. 93, No. 1, 2010, pp. 155-160. doi:10.1111/j.1551-2916.2009.03374.x
[25] M. F. García-Sánchez, J. Pe?a, A. Ortiz, G. Santana, J. Fandi?o, M. Bizarro, F. Cruz-Goundarilla and J. C. Alon- so, “Nanostruc-tured YSZ Thin Films for Solid Oxide Fuel Cells Deposited by Ultrasonic Spray Pyrolysis,” Solid State Ionics, Vol. 179, No. 7-8, 2008, pp. 243-249. doi:10.1016/j.ssi.2008.01.088
[26] T. Talebi, M. Haji and B. Raissi, “Effect of Sintering Temperature on the Microstructure, Roughness and Electrochemical Impedance of Electrophoretically Deposited YSZ Electrolyte for SOFCs,” International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9420-9426. doi:10.1016/j.ijhydene.2010.05.079
[27] M.-F. García-Sánchez, N. Fernández, M-L. Martínez-Sar- rión, L. Mestres, F. Fernández-Gutierrez, G. Santana and R. Ruiz-Salvador, “Separation of Electronic and Ionic Con- ductivity in Mixed Conductors from the AC Response: Application to Pr0.56Bi0.04Li0.2TiO3,” Applied Physics Letters, Vol. 93, No. 3, 2008, 034105. doi:10.1063/1.2959189
[28] D. Jonhson, “Zview for Windows,” Scribner Associates, Inc., Charlesville, Virginia, 2005.
[29] M. Itoh, Y. Inaguma, W-H. Jung, L. Chen and T. Nakamura, “High Lithium Ion Conductivity in the Perovs- kite-Type Compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm,” Solid State Ionics, Vol. 70-71, No. 1, 1994, pp. 203- 207. doi:10.1016/0167-2738(94)90310-7
[30] Y.-J. Shan, Y. In-aguma and M. Itoh, “The Effect of Electrostatic Potentials on Lithium Insertion for Perovskites Oxides,” Solid State Ionics, Vol. 79, 1995, pp. 245-251. doi:10.1016/0167-2738(95)00069-I

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.