Electrical and Spectroscopic Studies of the CdO Substituted Lead Vanadate Glass System vs Crystalline Form
Ponnada Tejeswara Rao, Kocharlakota V. Ramesh, Devulapalli L. Sastry
.
DOI: 10.4236/njgc.2012.21006   PDF    HTML     4,134 Downloads   7,740 Views   Citations

Abstract

Results of the direct current (DC) Electrical Conductivity, thermoelectric power and Electron Spin Resonance (ESR) of CdO substituted PbO-V2O5 glass system are reported. Conduction in these glasses is found to be electronic and the hoping of polaron seems to be the dominant process in the transport mechanism. There is a remarkable decrease in the activation energy for conduction in the annealed and devitrified samples when compared to their amorphous counter parts. It is observed that there is remarkable improvement in the conductivity of the crystalline samples when compared to their amorphous counter parts. The thermoelectric power measurements indicates that the amorphous samples are n-type at room temperature where as the crystalline samples are p-type at room temperature. In crystalline samples the hyperfine structure is nearly smeared out and a relatively broad line with an isotropic g value characterizes the spectra.

Share and Cite:

P. Rao, K. Ramesh and D. Sastry, "Electrical and Spectroscopic Studies of the CdO Substituted Lead Vanadate Glass System vs Crystalline Form," New Journal of Glass and Ceramics, Vol. 2 No. 1, 2012, pp. 34-40. doi: 10.4236/njgc.2012.21006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. E. Owen, “Electronic and Structural Properties of Amor- phous Semi Conductors,” Academic Press, London, 1973.
[2] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Physical Review, Vol. 109, No. 5, 1958, pp. 1492-1505. doi:10.1103/PhysRev.109.1492
[3] K. V. Ramesh and D. L. Sastry, “Transport Properties of ZnO Substituted Lead Vanadate Glass System at Eutectic Composition,” Materials Science and Engineering: B, Vol. 126, 2006, pp. 66-73. doi:10.1016/j.mseb.2005.08.111
[4] K. V. Ramesh and D. L. Sastry, “Temperature-Dependent Thermoelectric Power of CuO, ZnO and TiO2 Substitute for PbO in Eutectic Lead Vanadate Glass System,” International Journal of Modern Physics B, Vol. 18, No. 25, 2004, pp. 3327-3341. doi:10.1142/S0217979204026482
[5] K. V. Ramesh and D. L. Sastry, “DC Electrical Conductivity, Thermoelectric Power Measurements of TiO2-Sub- stituted Lead Vanadate Glasses,” Physica B: Condensed Matter, Vol. 387, No. 1-2, 2007, pp. 45-51. doi:10.1016/j.physb.2006.03.026
[6] K. V. Ramesh and D. L. Sastry, “IR and ESR Studies of CuO Substituted for PbO in Eutectic Lead Vanadate Glass System,” Journal of Non-Crystalline Solids, Vol. 352, No. 50-51, 2006, pp. 5421-5428. doi:10.1016/j.jnoncrysol.2006.08.017
[7] C. Bhujanga Rao, K. V. Ramesh and D. L. Sastry, “Ano- malous Temperature Variation of Thermoelectric Power in CdO and Ag2O Substi-tuted Lead Vanadate Glass System,” Physica B: Condensed Matter, Vol. 382, No. 1-2, 2006, pp. 81-85. doi:10.1016/j.physb.2006.02.002
[8] C. Bhujanga Rao, “Physical Properties of CdO, Ag2O and TeO2 Substituted for PbO in Eutectic Lead Vanadate Glass System,” Ph.D. Thesis, Andhra University, Visakhapatnam, India, 2005.
[9] A. Ghosh and B. K. Chaudari, “DC Conductivity of V2O5-Bi2O3 Glasses,” Journal of Non-Crystalline Solids, Vol. 83, No. 1-2, 1986, pp. 151-161. doi:10.1016/0022-3093(86)90065-7
[10] S. Mandal, and A. Ghosh, “Electrical Properties of Lead Vanadate Glasses,” Physical Review B, Vol. 49, No. 5, 1994, pp. 3131-3135. doi:10.1103/PhysRevB.49.3131
[11] N. F. Mott and E. A. Davis, “Electronic Processes in Non -Crystalline Materials,” 2nd Edtion, Clarendon Press, Ox- ford, 1979.
[12] E. A. Davis and N. F. Mott, “Conduction in Non-Crys- talline Systems V. Conductivity, Optical Absorption and Photoconductivity in Amorphous Semiconductors,” Philosophical Magazine, Vol. 22, No. 179, 1970, pp. 903- 922. doi:10.1080/14786437008221061
[13] N. F. Mott, “Conduc-tion Glasses Containing Transition Metal Ions,” Journal of Non-Crystalline Solids, Vol. 1, No. 1, 1968, pp. 1-28. doi:10.1016/0022-3093(68)90002-1
[14] M. Sayer and A. Mansingh, “Transport Properties of Se- miconducting Phosphate Glasses,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4629-4643.
[15] A. Ghosh, “Transport Properties of Vanadium Germanate Glassy Semiconductors,” Physical Review B, Vol. 42, No. 9, 1990, pp. 5665-5676. doi:10.1103/PhysRevB.42.5665
[16] C. H. Chung, J. D. Mackenzie and L. Murawski, “Electrical Properties of Semi-conducting Oxide Glasses,” Revue de Chimie Minerale, Vol. 16, 1979, pp. 308-327.
[17] S. Mandal and A. Ghosh, “Electrical Properties of Lead Vanadate Glasses,” Physical Review B, Vol. 49, No. 5, 1994, pp. 3131-3135. doi:10.1103/PhysRevB.49.3131
[18] R. R. Heikes, “Thermoe-lectricity,” Interscience, New York, 1961.
[19] I. G. Austin and N. F. Mott, “Polarons in Crystalline and Non-Crystalline Mate-rials,” Advances in Physics, Vol. 18, No. 17, 1969, pp. 41-53. doi:10.1080/00018736900101267
[20] H. El Mkami, B. Deroide, N. Abidi, P. Rumori and J. V. Zanchetta, “ESR Study and dc Conductivity of Binary Glasses of the System (V2O5)x(B2O3)1-x,” Physics and Che- mistry of Glasses, Vol. 38, 1997, pp. 137-145.
[21] F. Momo, A. Sotgin, E. Baicchi, M. Bettinelli and A. Mon- tenero, “ESR Study of the Equimolar PbO-V2O5 System,” Journal of Materials Science, Vol. 17, No. 11, 1982, pp. 3221-3226. doi:10.1007/BF01203486
[22] C. J. Ballhausen and H. B. Grey, “The Electronic Stru- cture of the Vanadyl Ion,” Inorganic Chemistry, Vol. 1, No. 1, 1962, pp. 111-132. doi:10.1021/ic50001a022
[23] L. D. Bogomolov, “The Effects of Copper Impurity in Va- nadate and Tungsten-Phosphate Glasses,” Journal of Non- Crystalline Solids, Vol. 30, 1979, pp. 378-383.
[24] K. V. Ramesh, “Ther-mal, Electrical and Spectroscopic Stu- dies of CuO, ZnO and TiO2 Substituted for PbO in Eutectic Lead Vanadate Glass System,” Ph.D. Thesis, Andhra University, Visakhapatnam, India, 2000.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.