Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract
Umesh Kumar Parida, Birendra Kumar Bindhani, Padmalochan Nayak
.
DOI: 10.4236/wjnse.2011.14015   PDF    HTML     13,944 Downloads   32,669 Views   Citations

Abstract

In the present research program, cost effective and environment friendly gold nanoparticless were synthesized using the onion (Allium cepa) extract as the reducing agent. The nanoparticless were characterized using UV-visble, XRD, and SEM, TEM methods. The absorption peak at 540 nm was found to be broaden with increase in time indicating the polydispersity nature of the nanoparticles. The XRD results suggested that the crystallization of the bio-organic phase occurs on the surface of the gold nanoparticles or vice versa. The broadening of peaks in the XRD patterns was attributed to particle size effects. The internalization of nanoparticles within cells could occur via processes including phagocytosis, fluid-phase endocytosis and receptor mediated endocytosis.

Share and Cite:

U. Parida, B. Bindhani and P. Nayak, "Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract," World Journal of Nano Science and Engineering, Vol. 1 No. 4, 2011, pp. 93-98. doi: 10.4236/wjnse.2011.14015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Poliakoff and P. Anastas, “A Principled Stance,” Nature, Vol. 413, 2001, p. 257. doi:10.1038/35095133
[2] M. Poliakoff, J. M. Fitzpatrick, T. R. Farren and P. T. Anastas, “Green Chemistry: Science and Politics of Change,” Science, Vol. 297, No. 5582, 2002, pp. 807-810. doi:10.1126/science.297.5582.807
[3] R. A. Gross and B. Kalra, “Biodegradable Polymers for the Environment,” Science, Vol. 297, No. 5582, 2002, pp. 803-807. doi:10.1126/science.297.5582.803
[4] J. M. DeSimone, “Practical Approaches to Green Solvents,” Science, Vol. 297, No. 5582, 2002, pp. 799-803. doi:10.1126/science.1069622
[5] P. Raveendran, J. Fu and S. L. Wallen, “Completely ‘Green’ Synthesis and Stabilization of Metal Nanoparticles,” Journal of American Chemical Society, Vol. 125, No. 46, 2003, pp. 13940-13941. doi:10.1021/ja029267j
[6] K. Govindraju, V. Kiruthiga and G. Singaravelu, “Evaluation of Biosynthesized Silver Nanoparticles against Fungal Pathogens of Mulberry Morus Indica,” Journal of Biopesticides, Vol. 1, 2008, pp. 101-104.
[7] K. Govindraju, V. Kiruthiga, K. V. Ganesh and G. Singaravelu, “Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum wightii Grevilli and Their Antibacterial Effects,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 9, 2009, pp. 5497-5501. doi:10.1166/jnn.2009.1199
[8] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. J. Hong and C. Chen, “Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf,” Nanotechnology, Vol. 18, No. 10, 2007, pp. 105104-105115. doi:10.1088/0957-4484/18/10/105104
[9] L. Jorge, G. Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani and M. J. Yacaman, “Phytoremediation of Heavy Metals and Study of the Metal Coordination by X-Ray Absorption Spectroscopy,” Langmuir, Vol. 19, 2003, p. 1357.
[10] J. L. Gardea-Torresdey, K. J. Tiemann, J. G. Parsons, G. Gamez, I. Herrera and M. Jose Yacaman, “Investigation into the Mechanism(s) of Au (III) Binding and Reduction by Alfalfa Biomass,” Microchemical Journal, Vol. 71, No. 2-3, 2002, pp. 193-204. doi:10.1016/S0026-265X(02)00011-5
[11] R. Hardman, “A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors,” Environmantal Health Perspectives, Vol. 114, No. 2, 2006, pp. 165-172. doi:10.1289/ehp.8284
[12] J. Curtis, M. Greenberg, J. Kester, S. Phillips and G. Krieger, “Nanotechnology and Nanotoxicology: A Primer for Clinicians,” Toxicological Reviews, Vol. 25, No. 4, 2006, pp. 245-260. doi:10.2165/00139709-200625040-00005
[13] N. Lewinski, V. Colvin and R. Drezek, “Cytotoxicity of Nanoparticles,” Small, Vol. 4, No. 1, 2008, pp. 26-49. doi:10.1002/smll.200700595
[14] J. C. Espín, M. T. García-Conesa and F. A. Tomás-Barberán, “Nutraceuticals: Facts and Fiction,” Phytochemistry, Vol. 68, No. 22-24, 2007, pp. 2986-3008. doi:10.1016/j.phytochem.2007.09.014
[15] S. Rochfort and J. Panozzo, “Phytochemicals for Health, the Role of Pulses,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 20, 2007, pp. 7981-7994. doi:10.1021/jf071704w
[16] K. D. R. Setchell, N. M. Brown, P. Desai, L. Zimmer-Nechemias, B. E. Wolfe, W. T. Brashear, A. S. Kirschner, A. Cassidy and J. E. Heubi, “Bioavailability of Pure Isoflavones In Healthy Humans and Analysis of Commercial Soy Isoflavone Supplements,” Journal of Nutrition, Vol. 131, No. 4, 2001, pp. 1362S-1275S.
[17] P. J. Magee and I. R. Rowland, “Phyto-Oestrogens, Their Mechanism of Action: Current Evidence for a Role in Breast and Prostate Cancer,” British Journal of Nutrition, Vol. 91, No. 4, 2004, pp. 513-520. doi:10.1079/BJN20031075
[18] J. L. Limer and V. Speirs, “Phyto-Oestrogens and Breast Cancer Chemoprevention,” Breast Cancer Research, Vol. 6, 2004, pp. 119-127. doi:10.1186/bcr781
[19] O. J. Bandele and N. Osheroff, “(-)-Epigallocatechin Gallate, “A Major Constituent of Green Tea, Poisons Human Type II Topoisomerases” Chemical Research in Toxicology, Vol. 21, No. 4, 2008, pp. 936-943. doi:10.1021/tx700434v
[20] S. Shankar, S. Ganapathy and R. K. Srivastava, “Green Tea Polyphenols: Biology and Therapeutic Implications in Cancer,” Front Biosci, Vol. 12, 2007, pp. 4881-4899. doi:10.2741/2435
[21] K. Dannemann, W. Hecker, H. Haberland, A. Herbst, A. Galler, T. Sch?fer, E. Br?hler, W. Kiess and T. M. Kapellen, “Use of Complementary and Alternative Medicine in Children with Type 1 Diabetes Mellitus—Prevalence, Patterns of Use, and Costs,” Pediatr Diabetes, 2008.
[22] S. Suppapitiporn and N. Kanpaksi, “The Effect of Cinnamon Cassia Powder in Type 2 Diabetes Mellitus,” Journal of the Medical Association of Thailand, Vol. 89 Supplement 3, 2006, p. 200.
[23] J. R. Stephen and S. J. Maenaughton, “Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis,” Current Opinon in Biotechnology, Vol. 10, No. 3, 1999, p. 230. doi:10.1016/S0958-1669(99)80040-8
[24] R. K. Mehra and D. R. Wingre, “Methabenzthiazuron on Oxygen Evolution and Cell Growth,” Journal of Cellular Biochemistry, Vol. 45, No. 1, 1991, p. 30. doi:10.1002/jcb.240450109
[25] B. Nair and T. Pradeep, “Preparation of Gold Nanoparticles from Mirabilis Jalapa Flowers,” Crystal Growth Design, Vol. 2, No. 4, 2002, pp. 293-298. doi:10.1021/cg0255164
[26] G. Southam and T. J. Beveridge, “The Use of Microorganisms for the Formation of Metal Nanoparticles,” Geochimica et Cosmochimica Acta, Vol. 60, No. 22, 1996, p. 4369. doi:10.1016/S0016-7037(96)00235-9
[27] M. G. Robinson, L. N. Brown and D. Beverley, “Effect of Gold (III) on the Fouling Diatom Amphora Coffeaeformis: Uptake, Toxicity and Interactions with Copper,” Biofouling, Vol. 11, No. 1, 1997, pp. 59-79. doi:10.1080/08927019709378320
[28] B. Ankamwar, “Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia Catappa,” E-Journal of Chemistry, Vol. 7, No. 4, 2010, pp. 1334-1339.
[29] S. K. Nune, N. Chanda, R. Shukla, K. Katti, R. R. Kulkarni, S. Thilakavathy, S. Mekapothula, R. Kannan and K. V. Katti, “Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for Production of Biocompatible Gold Nanoparticles,” Journal of Materials Chemistry, Vol. 10, 2009, p. 1039.
[30] S. S. Shiv, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, “Biological Synthesis of Triangular Gold Nanoprisms,” Nature Materials, Vol. 3, 2004, pp. 482-488. doi:10.1038/nmat1152
[31] F. E. Kandil, A. M. Soliman, S. R. Skodack and T. J. Mabry, “In Vitro Antibacterial Activity of the Extracts Derived from Terminalia catappa,” Asian Journal of Chemistry, Vol. 11, 1999, pp. 1001-1004.
[32] S. P. Pawar and S. C. Pal, “Antimicrobial Activity of Extracts of Terminalia catappa Root,” Indian Journa of Medical Sciences, Vol. 56, No. 6, 2002, pp. 276-278.
[33] T. F. Ko, Y. M. Weng and R. Y. Chiou, “Antimutagenicity of Supercritical CO2 Extracts of Terminalia catappa Leaves and Cytotoxicity of the Extracts to Human Hepatoma Cells,” Journal of Agricultural and Food Chemistry, Vol. 11, No. 9, 2002, pp. 5343-5348. doi:10.1021/jf0203500
[34] C. C. Lin, Y. F. Hsu and T. C. Lin, “Evaluation of Antioxidant Activity of Eleven Thai Medicinal Herbs,” Anticancer Research, Vol. 21 No. 1A, 2001, pp. 237-243.
[35] C. C. Chyou, S. Y. Tsai, P. T. Ko and J. L. Mau, “Terminalia catappa Linn. (Combretaceae),” Food Chemistry, Vol. 78. No. 4, 2002, pp. 483-488.
[36] J. Saffi, L. Sonego, Q. D. Varela and M. Salvador “Anti- oxidant Activity of L-Ascorbic Acid in Wild Type and Superoxide Dismutase Deficient Strains of Saccharomyces Cerevisiae,” Redox Report, Vo1. 11, 2006, pp. 179-184.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.