Share This Article:

Application of a Probabilistic Neural Network in Radial Velocity Curve Analysis of the Spectroscopic BinaryStars ROXR1 14, RX J1622.7-2325Nw, RR Lyn, 12 Boo and HR 6169

Abstract Full-Text HTML Download Download as PDF (Size:353KB) PP. 232-236
DOI: 10.4236/ijaa.2011.14028    2,948 Downloads   6,050 Views  

ABSTRACT

Using measured radial velocity data of five double-lined spectroscopic binary systems ROXR1 14, RX J1622.7-2325Nw, RR Lyn, 12 Boo and HR 6169, we find corresponding orbital and spectroscopic elements via a Probabilistic Neural Network (PNN). Our numerical results are in good agreement with those obtained by others using more traditional methods.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Ghasemisalehabadi, T. Rostami, K. Ghaderi, K. Karimizadeh and S. Khodamoradi, "Application of a Probabilistic Neural Network in Radial Velocity Curve Analysis of the Spectroscopic BinaryStars ROXR1 14, RX J1622.7-2325Nw, RR Lyn, 12 Boo and HR 6169," International Journal of Astronomy and Astrophysics, Vol. 1 No. 4, 2011, pp. 232-236. doi: 10.4236/ijaa.2011.14028.

References

[1] R. Lehmann-Filhés, “Ueber die Bestimmung einer Doppel- sternbahn aus Spectroskopischen Messungen der im Visionsradius Liegenden Geschwindigkeitscomponente,” As- tronomische Nachrichten, Vol. 136, No. 2, 1894, pp. 17-30.
[2] T. E. Sterne, “Notes on Binary Stars. V. The Determination by Least-Squares of the Elements of Spectroscopic Binaries,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 27, No. 3, 1941, PP. 175-181.
[3] R. M. Petrie, “Astronomical Techniques,” University of Chicago Press, Chicago, 1960.
[4] K. Karami and H. Teimoorinia, “Velocity Curve Analysis of the Spectroscopic Binary Stars by the Non-linear Least Squares,” Astrophysics and Space Science, Vol. 311, No. 4, 2007, pp. 435-442.
[5] K. Karami and R. Mohebi, “Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression,” Chinese Journal of Astronomy and Astrophysics, Vol. 7, No. 4, 2007, pp. 558-564.
[6] K. Karami and R. Mohebi, “Velocity Curve Analysis of Spe- ctroscopic Binary Stars PV Pup, HD141929, EE Cet and V921 Her by Nonlinear Regression,” Journal of Astro- physics and Astronomy, Vol. 28, 2007, pp. 217-230.
[7] K. Karami and R. Mohebi, “Velocity Curve Studies of Spe- ctroscopic Binary Stars V380 Cygni, V401 Cyg, V523 Cas, V373 Cas and V2388 Oph,” Journal of Astrophysics and Astronomy, Vol. 30, No. 3-4, 2009, pp. 153-163.
[8] K. Karami, R. Mohebi and M. M. Soltanzadeh, “Applica- tion of a New Non-linear Least Squares Velocity Curve Analysis Technique for Spectroscopic Binary Stars,” As- trophysics and Space Science, Vol. 318, No. 1-2, 2008, pp. 69-71.
[9] V. Rosero, L. Prato, L. H. Wasserman and B. Rodgers, “Orbital Solutions for Two Young, Low-Mass Spectroscopic Binaries in Ophiuchus,” The Astronomical Journal, Vol. 141, No. 1, 2011, Article ID: 13.
[10] J. Tomkin and F. C. Fekel, “New Precision Orbits of Bright Double-lined Spectroscopic Binaries RR Lyn, 12 Boo, and HR 6169,” The Astronomical Journal, Vol. 131, No. 5, 2006, pp. 2652-2663.
[11] W. M. Smart, “Textbook on Spherical Astronomy,” 6th Edition, Cambridge University Press, Cambridge, 1990.
[12] M. Bazarghan, H. Safari, D. E. Innes, E. Karami and S. K. Solanki, “A Nanoflare Model for Active Region Radiance: Application of Artificial Neural Networks,” Astronomy and Astrophysics, Vol. 492, No. 1, 2008, pp. L13-L16.
[13] D. F. Specht, “Probabilistic Neural Networks for Classi- fication, Mapping, or Associative Memory,” Proceedings of IEEE International Conference on Neural Networks, San Diego, 24- 27 July 1988, pp.525-532.
[14] D. F. Specht, “Probabilistic Neural Networks,” Neural Net- works, Vol. 3, No. 1, 1990, pp. 109-118. doi:10.1016/0893-6080(90)90049-Q
[15] E. Parzen, “On Estimation of a Probability Density Func- tion and Mode,” Annals of Mathematical Statistics, Vol. 33, No. 3, 1962, pp. 1065-1076.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.