Share This Article:

Development on ethanol production from xylose by recombinant Saccharomyces cerevisiae

Full-Text HTML Download Download as PDF (Size:513KB) PP. 210-215
DOI: 10.4236/ns.2009.13028    5,261 Downloads   10,055 Views   Citations

ABSTRACT

Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic con- version of lignocellulose to ethanol. However, the traditional ethanol production strain Sacch- aromyces cerevisiae does not naturally use xy-lose as a substrate. A number of different ap-proaches have been used to engineer yeasts to reconstruct the gene background of S. cerevi- siae in recent years. The recombinant strains showed better xylose fermentation quality by comparison with the natural strains. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol from three aspects including construction of xylose transportation, xylose-metabolic pathway and inhibitor toler-ance improvement of S. cerevisiae.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yang, J. , Lu, J. , Dang, H. , Li, Y. and Ge, B. (2009) Development on ethanol production from xylose by recombinant Saccharomyces cerevisiae. Natural Science, 1, 210-215. doi: 10.4236/ns.2009.13028.

References

[1] A. J. Ragauskas, C. K. Williams, B. H. Davison, et al. (2006) The path forward for biofuels and biomaterials. [J]. Science, 311, 484-489.
[2] A. Wiselogel, S. Tyson, and D. Johnsson, (1996) Biomass feedstock resources and composition. [M]. C. E.Wyman (Editor), Handbook on bioethanol: Production and utiliza-tion. Washington, Taylor and Francis, 105-118.
[3] L. Olsson and B. Hahn-H?gerdal, (1993) Fermentative performance of bacteria and yeast in lignocellulose hy-drolysates. [J]. Process Biochemistry, 28(4), 249-257.
[4] L. Olsson and J. Nielsen, (2000) The role of metabolic engineering in the improvement of Saccharomyces cere-visiae: Utilization of industrial media. [J]. Enzyme Mi-crobial Technology, 26(9-10), 785-792.
[5] B. Hahn-H?gerdal, C. F. Wahlbom, M. Gárdonyi, et al., (2001) Metabolic engineering of Saccharomyces cere-visiae for xylose utilization. Advances in Biochemistry Engineering and Biotechnology, 73, 53-84.
[6] T. W. Jeffries, I. V. Grigoriev, J. Grimwood, et al., (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. [J]. Nature Biotechnology, 25, 319-326.
[7] P. J. Slininger, R. J. Bothast, J. E. Vancauwenberge, et al., (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus [J]. Biotechnology and Bioengineering, 24(2), 371-384.
[8] T. W. Jeffries, (2006) Engineering yeasts for xylose metabo-lism. [J]. Current Opinion in Biotechnology, 17, 320- 326.
[9] K. L. Tr?ff, R. R. O. Cordero, W. H. van Zyl, et al., (2001) Deletion of the GRE3 aldose-reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and Xks1 genes. [J], Applied and Environmental Microbiol-ogy, 67(12), 5668-5674.
[10] A. Eliasson, C. Christensson, C. F. Wahlbom, et al., (2000) Anaerobic xylose fermentation by Recombinant Sac-charomyces cerevisiae Carrying XYL1, XYL2 and XKS1 in Mineral Medium Chemostat Cultures. [J]. Applied and Environmental Microbiology, 66(8), 3381-33-86.
[11] M. Kuyper, M. M. P. Hartog, M. J. oirkens, et al., (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xy-lose fermentation. [J]. FEMS Yeast Research, 5(4-5), 399-409.
[12] T. Hamacher, J. Becker, M. Gárdonyi, et al., (2002) Characterization of xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. [J]. Microbiology, 148, 2783-2788.
[13] E. Boles and C. P. Hollenberg, (1997) The molecular genetics of hexose transport in yeasts. [J]. FEMS Micro-biology Reviews, 21(1), 85-111.
[14] R. Wieczorke, S. Krampe, T. Weierstall, et al., (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. [J]. FEBS Letter, 464, 123-128.
[15] A. Kotyk, (1968) Properties of the sugar carrier in baker’s yeast. [J]. Folia Microbiologica, 13(3), 212-220.
[16] P. K?tter and M. Ciriacy, (1993) Xylose fermentation by Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 38(6), 776-783.
[17] L. M. José, P. Goncalves, and I. Spencer-Martins, (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia:First molecular characterization of a yeast xylose–H+ symporter. [J]. Biochemistry Journal, 395(3), 543-549.
[18] T. Weierstall, C. P. Hollenberg, and E. Boles, (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. [J]. Molecular Microbiology, 31(3), 871-883.
[19] T. Hamacher, J. Becker, M. Gárdonyi, et al., (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization [J]. Microbiology, 148, 2783-2788.
[20] S. Katahira, M. Ito, H. Takema, et al., (2008) Improve-ment of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1 [J]. Enzyme and Microbial Technology, 43(2), 115-119.
[21] M. Gárdonyi, M. Jeppsson, G. Lidén, et al., (2003) Con-trol of xylose consumption by xylose transport in recom-binant Saccharomyces cerevisiae. [J]. Biotechnology and Bioengineering, 82(7), 818–824.
[22] M. Gárdonyi, M. ?sterberg, C. Rodrigues, et al., (2003) High capacity xylose transport in Candida intermedia PYCC 4715. [J]. FEMS Yeast Research, 3, 45–52.
[23] A. Kuhn, C. van Zyl, A. van Tonder, et al., (1995) Puri-fication and partial characterization of an aldo-keto re-ductase from Saccharomyces cerevisiae. [J]. Applied and Environmental Microbiology, 61(4), 1580– 1585.
[24] P. K?tter, R. Amore, C. P. Hollenberg, et al., (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xy-lose-utilizing Saccharomyces cerevisiae transformant. [J]. Current Genetics, 18(6), 493-500.
[25] M. Walfridsson, J. Hallborn, M. Penttila, et al., (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. [J]. Applied and Environmental Microbi-ology, 61(12), 4184-4190.
[26] S. Ostergaard, L. Olsson, and J. Nielsen, (2000) Metabolic Engineering of Saccharomyces cerevisiae. [J]. Microbiol-ogy and Molecular Biology Reviews, 64(1), 34- 50.
[27] M. Anderlund, P. R?dstr?m, and B. H. H?gerdal, (2001) Expression of bifunctional enzymes with Xylose Reduc-tase and Xylitol Dehydrogenase activity in Saccharomy-ces cerevisiae alters product formation during Xylose fermentation. [J]. Metabolic Engineering, 3(3), 226-235.
[28] S. Watanabe, T. Kodaki, and K. Makino, (2005) Com-plete reversal of coenzyme specificity of xylitol dehy-drogenase and increase of thermostability by the intro-duction of structural zinc. [J]. The Journal of Biological Chemistry, 280(11), 10340-10349.
[29] S. Watanabe, A. A. Salehb, S. P. Pack, et al., (2007) Ethanol production from xylose by recombinant Sac-charomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. [J]. Journal of Biotechnology, 130,316–319.
[30] Q. K. Zeng, H. L. Du, Z. C. Zhai, et al., (2008) Muta-tional research on the role of Lysine 21 in the Pichia stipitis Xylose Reductase. [J]. Chinese Journal of Bio-technology, 24(6), 1108-1111.
[31] T. W. Jeffries and Y. S. Jin, (2000) Ethanol and thermo-tolerance in the bioconversion of xylose by yeasts [J]. Advances in Applied Microbiology, 47, 221-268.
[32] R. Amore, M. Wilhelm, and C. P. Hollenberg, (1989) The fermentation of xylose—An analysis of the expres-sion of Bacillus and Actinoplanes xylose isomerase gens in yeast. [J]. Applied Microbiology and Biotechnology, 30(4), 351-357.
[33] M. Walfridsson, X. Bao, M. Anderlund, et al., (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isom-erase. [J]. Applied and Environmental Microbiology, 62(12), 4648-4651.
[34] M. Kuyper, A. A. Winkler, J. P. van Dijken, et al., (2001) Minimal metabolic engineering of Saccharomyces cere-visiae for efficient anaerobic xylose fermentation: a proof of principle. [J]. FEMS Yeast Research, 4(6), 655-664.
[35] D. Brat, E. Boles, and B. Wiedemann, (2009) Functional expression of a bacterial xylose isomerase in Saccharo-myces cerevisiae. [J]. Applied and Environmental Mi-crobiology, 75(8), 2304-2311.
[36] Y. S. Jin and T. W. Jeffries, (2003) Changing flux of xylose metabolites by altering expression of xylose re-ductase and xylitol dehydrogenase in recombinant Sac-charomyces cerevisiae. [J]. Applied Biochemistry and Biotechnology, 106(1-3), 277-285.
[37] X. D. Xue and N. W. Y. Ho, (1990) Xylulokinase activ-ity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. [J]. Applied Biochemistry and Biotechnology, 24-25(1), 193-199.
[38] N. W. Y. Ho and S. F. Chang, (1989) Cloning of yeast xylulokinase gene by complementation in Escherichia coli and yeast mutations. [J]. Enzyme Microbial Tech-nology, 11, 417-421.
[39] M. H. Toivari, A. Aristidou, L. Ruohonen, et al., (2001) Conversion of Xyl ose to ethanol by recombinant Sac-charomyces cerevisiae: importance of Xylulokinase (XKS1) and oxygen availability. [J]. Metabolic Engi-neering, 3(3), 236-249.
[40] M. Walfridsson, J. Hallborn, M. Penttil?, et al., (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. [J]. Applied and Environmental Microbi-ology, 61(12), 4184–4190.
[41] X. Bao, D. Gao, Y. Qu, et al., (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. [J]. Chinese Journal of Biotechnology, 13(4), 225- 231.
[42] H. Juhnke, B. Krems, P. Kotter, et al., (1996) Mutants that show increased sensitivity to hydrogen peroxide re-veal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. [J]. Mo-lecular & General Genetics, 252(4), 456–464.
[43] M. Mollapour, D. Fong, K. Balakrishnan, et al., (2004) Screening the yeast deletant mutant collection for hyper-sensitivity and hyperresistance to sorbate, a weak organic acid food preservative. [J]. Yeast, 21(11), 927–946.
[44] B. Krems, C. Charizanis, and K. D. Entian, (1995) Mu-tants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. [J]. Current Genetics, 27(5), 427– 434.
[45] S. Larsson, P. Cassland, and L. J. Jonsson, (2001) De-velopment of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expres-sion of laccase. [J]. Aplied and Environmental Microbi-ology, 67(3), 1163-1170.
[46] S. W. Gorsich, B. S. Dien, N. N. Nichols, et al., (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. [J]. Applied Mi-crobiology and Biotechnology, 71(3), 339-349.
[47] Z. L. Liu, P. J. Slininger, and S. W. Gorsich, (2005) En-hanced biotransformation of furfural and hydroxy-methylfurfural by newly developed ethanologenic yeast strains. [J]. Applied Biochemistry and Biotechnology, 121(1-3), 451-460.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.