Journal of Modern Physics

Volume 9, Issue 13 (November 2018)

ISSN Print: 2153-1196   ISSN Online: 2153-120X

Google-based Impact Factor: 0.86  Citations  h5-index & Ranking

The Periodic Table of Elementary Particles for Baryonic Matter and Dark Matter: Upward-Going ANITA Events

HTML  XML Download Download as PDF (Size: 532KB)  PP. 2308-2319  
DOI: 10.4236/jmp.2018.913146    568 Downloads   1,190 Views  Citations
Author(s)

Affiliation(s)

ABSTRACT

This paper posits that the upward-going ANITA events are derived from the cosmic ray of the baryonic-dark matter (BDM) Higgs boson. In the extended standard model (ESM) for baryonic matter and dark matter, the spontaneous symmetry breaking through the Higgs mechanism for the symmetrical massless baryonic matter left-handed neutrinos and massless dark matter right-handed neutrinos produced massless baryonic matter left-handed neutrinos, sterile massive dark matter neutrinos, and the BDM Higgs boson. The BDM Higgs boson is the composite of the high-mass tau neutrino and the high-mass dark matter neutrino. During the passage through the high-density part of the Earth, the BDM Higgs boson is transformed into the oscillating BDM Higgs boson between the composite of the high-mass tau neutrino and the high-mass dark matter neutrino and the composite of the high-mass tau neutrino and the low-mass dark matter neutrino. The oscillating BDM Higgs boson decays into the high-mass tau neutrino with the extra energy and the low-mass dark matter neutrino (27 eV) in the low-density water-ice layer of the Earth. The high-mass tau neutrino is converted into ultra-high-energy tau neutrino which decays into tau lepton through the charged-current interactions, and tau lepton emerges from the surface of ice. Based on the periodic table of elementary particles, the calculated value for the high-mass tau neutrino with the extra energy is 0.47 EeV in good agreement with the observed 0.56 and 0.6 EeV. The periodic table of elementary particles for baryonic matter, dark matter, and gravity is based on the seven principal mass dimensional orbitals for stable baryonic matter leptons (electron and left-handed neutrinos), gauge bosons, gravity, and dark matter and the seven auxiliary mass dimensional orbitals for unstable leptons (muon and tau) and quarks, and calculates accurately the masses of all elementary particles and the cosmic rays by using only five known constants.

Share and Cite:

Chung, D. (2018) The Periodic Table of Elementary Particles for Baryonic Matter and Dark Matter: Upward-Going ANITA Events. Journal of Modern Physics, 9, 2308-2319. doi: 10.4236/jmp.2018.913146.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.