Open Journal of Forestry

Volume 5, Issue 7 (October 2015)

ISSN Print: 2163-0429   ISSN Online: 2163-0437

Google-based Impact Factor: 0.90  Citations  

Landscape Patterns of Vegetation Canopy Regrowth Following Wildfires in the Sierra Nevada Mountains of California

HTML  XML Download Download as PDF (Size: 1133KB)  PP. 723-732  
DOI: 10.4236/ojf.2015.57064    5,713 Downloads   6,856 Views  Citations
Author(s)

ABSTRACT

Rapid recovery of pioneer shrub and forest patch cover can reduce soil erosion, nutrient runoff and degradation of stream habitats, and promote small mammal and avian biodiversity following stand-replacing wildfires. Landsat imagery from the past 25+ years was analyzed to understand patterns and rates of vegetation recovery, focusing on high burn severity (HBS) patches, within wildfire areas dating from the late 1940s in the Sierra-Nevada region of California. Normalized difference vegetation index (NDVI) levels indicative of recovered woody cover within HBS areas were analyzed starting in 1985 to quantify regrowth of patch dynamics. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. Patch complexity of dense woody cover was consistently high in fires after 1995 and increased with the elevation of HBS areas. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.

Share and Cite:

Potter, C. (2015) Landscape Patterns of Vegetation Canopy Regrowth Following Wildfires in the Sierra Nevada Mountains of California. Open Journal of Forestry, 5, 723-732. doi: 10.4236/ojf.2015.57064.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.